cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176231 Coefficient array of orthogonal polynomials whose moment sequence is the double factorial numbers A001147.

This page as a plain text file.
%I A176231 #14 Jan 15 2020 10:23:38
%S A176231 1,-1,1,3,-6,1,-15,45,-15,1,105,-420,210,-28,1,-945,4725,-3150,630,
%T A176231 -45,1,10395,-62370,51975,-13860,1485,-66,1,-135135,945945,-945945,
%U A176231 315315,-45045,3003,-91,1,2027025,-16216200,18918900,-7567560,1351350,-120120,5460,-120,1
%N A176231 Coefficient array of orthogonal polynomials whose moment sequence is the double factorial numbers A001147.
%C A176231 Exponential Riordan array [1/sqrt(1+2x),x/(1+2x)]. Inverse of A176230.
%C A176231 Diagonal sums are an alternating sign version of A025164.
%F A176231 Number triangle T(n,k) = (-1)^(n-k)*(2n)!/((2k)!(n-k)!2^(n-k)).
%F A176231 He_(2*n)(x) = Sum_{k=0..n} T(n, k)*x^(2*k) where He is Hermite's polynomial. - _Michael Somos_, Jan 15 2020
%e A176231 Triangle begins
%e A176231   1,
%e A176231   -1, 1,
%e A176231   3, -6, 1,
%e A176231   -15, 45, -15, 1,
%e A176231   105, -420, 210, -28, 1,
%e A176231   -945, 4725, -3150, 630, -45, 1,
%e A176231   10395, -62370, 51975, -13860, 1485, -66, 1,
%e A176231   -135135, 945945, -945945, 315315, -45045, 3003, -91, 1,
%e A176231   2027025, -16216200, 18918900, -7567560, 1351350, -120120, 5460, -120, 1
%e A176231 Production matrix is
%e A176231   -1, 1,
%e A176231   2, -5, 1,
%e A176231   0, 12, -9, 1,
%e A176231   0, 0, 30, -13, 1,
%e A176231   0, 0, 0, 56, -17, 1,
%e A176231   0, 0, 0, 0, 90, -21, 1,
%e A176231   0, 0, 0, 0, 0, 132, -25, 1,
%e A176231   0, 0, 0, 0, 0, 0, 182, -29, 1,
%e A176231   0, 0, 0, 0, 0, 0, 0, 240, -33, 1
%p A176231 T := (n,k) -> (2*n)!*(-1/2)^(n-k)/(2*k)!*(n-k)!:
%p A176231 seq(seq(T(n,k), k=0..n), n=0..8); # _Peter Luschny_, Jul 20 2019
%t A176231 (* The function RiordanArray is defined in A256893. *)
%t A176231 rows = 9;
%t A176231 R = RiordanArray[1/Sqrt[1 + 2 #]&, #/(1 + 2 #)&, rows, True];
%t A176231 R // Flatten (* _Jean-François Alcover_, Jul 20 2019 *)
%t A176231 T[ n_, k_] := Coefficient[ HermiteH[2 n, x/Sqrt[2]], x, 2 k]/2^n; (* _Michael Somos_, Jan 15 2020 *)
%t A176231 T[ n_, k_] := Coefficient[ Nest[# x - D[#, x]&, 1, 2 n], x, 2 k]; (* _Michael Somos_, Jan 15 2020 *)
%o A176231 (PARI) {T(n, k) = my(t=1); for(i=1, 2*n, t = x*t - t'); polcoeff(t, 2*k)}; /* _Michael Somos_, Jan 15 2020 */
%Y A176231 Cf. A001147, A025164, A176230.
%K A176231 easy,sign,tabl
%O A176231 0,4
%A A176231 _Paul Barry_, Apr 12 2010