This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176260 #22 Feb 09 2025 18:09:36 %S A176260 5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1, %T A176260 5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1, %U A176260 5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5 %N A176260 Periodic sequence: Repeat 5, 1. %C A176260 Interleaving of A010716 and A000012. %C A176260 Also continued fraction expansion of (5+3*sqrt(5))/2. %C A176260 Also decimal expansion of 17/33. %C A176260 Essentially first differences of A047264. %C A176260 Binomial transform of 5 followed by -A122803 without initial terms 1, -2. %C A176260 Inverse binomial transform of 5 followed by A007283 without initial term 3. %C A176260 Second inverse binomial transform of A168607 without initial term 3. %C A176260 Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 3*x^3 + 6*x^4 + 6*x^5 + ... is the o.g.f. for A008805. - _Peter Bala_, Mar 13 2015 %H A176260 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1). %F A176260 a(n) = 3+2*(-1)^n. %F A176260 a(n) = a(n-2) for n > 1; a(0) = 5, a(1) = 1. %F A176260 a(n) = -a(n-1)+6 for n > 0; a(0) = 5. %F A176260 a(n) = 5*((n+1) mod 2)+(n mod 2). %F A176260 a(n) = A010686(n+1). %F A176260 G.f.: (5+x)/(1-x^2). %F A176260 From _Amiram Eldar_, Jan 01 2023: (Start) %F A176260 Multiplicative with a(2^e) = 5, and a(p^e) = 1 for p >= 3. %F A176260 Dirichlet g.f.: zeta(s)*(1+2^(2-s)). (End) %F A176260 E.g.f.: 5*cosh(x) + sinh(x). - _Stefano Spezia_, Feb 09 2025 %o A176260 (Magma) &cat[ [5, 1]: n in [0..52] ]; %o A176260 [ 3+2*(-1)^n: n in [0..104] ]; %Y A176260 Cf. A010716 (all 5's sequence), A000012 (all 1's sequence), A090550 (decimal expansion of (5+3*sqrt(5))/2), A010686 (repeat 1, 5), A047264 (congruent to 0 or 5 mod 6), A122803 (powers of -2), A007283 (3*2^n), A168607 (3^n+2), A008805. %K A176260 cofr,cons,easy,nonn,mult %O A176260 0,1 %A A176260 _Klaus Brockhaus_, Apr 13 2010