This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176261 #15 Sep 08 2022 08:45:52 %S A176261 1,1,1,1,-2,1,1,-2,-2,1,1,-11,-11,-11,1,1,-20,-29,-29,-20,1,1,-56,-74, %T A176261 -83,-74,-56,1,1,-119,-173,-191,-191,-173,-119,1,1,-290,-407,-461, %U A176261 -470,-461,-407,-290,1,1,-650,-938,-1055,-1100,-1100,-1055,-938,-650,1 %N A176261 Triangle T(n,k) = A006130(k) - A006130(n) + A006130(n-k) read by rows. %C A176261 Row sums are s(n) = {1, 2, 0, -2, -31, -96, -341, -964, -2784, -7484, -20041, ...}, obey s(n) = 3*s(n-1) + 3*s(n-2) - 11*s(n-3) - 3*s(n-4) + 9*s(n-5) and have g.f. (1-x+3*x^3-9*x^2)/((1-x)*(1-x-3*x^2)^2). %H A176261 G. C. Greubel, <a href="/A176261/b176261.txt">Rows n = 0..100 of triangle, flattened</a> %F A176261 T(n,k) = T(n,n-k). %F A176261 T(n,k) = A006130(k) - A006130(n) + A006130(n-k), where A006130(n) = Sum_{j=0..n} binomial(n-j, j)*3^j. - _G. C. Greubel_, Nov 24 2019 %e A176261 Triangle begins as: %e A176261 1; %e A176261 1, 1; %e A176261 1, -2, 1; %e A176261 1, -2, -2, 1; %e A176261 1, -11, -11, -11, 1; %e A176261 1, -20, -29, -29, -20, 1; %e A176261 1, -56, -74, -83, -74, -56, 1; %e A176261 1, -119, -173, -191, -191, -173, -119, 1; %e A176261 1, -290, -407, -461, -470, -461, -407, -290, 1; %e A176261 1, -650, -938, -1055, -1100, -1100, -1055, -938, -650, 1; %e A176261 1, -1523, -2171, -2459, -2567, -2603, -2567, -2459, -2171, -1523, 1; %p A176261 A176261 := proc(n,k) %p A176261 A006130(k)-A006130(n)+A006130(n-k) ; %p A176261 end proc; # _R. J. Mathar_, May 03 2013 %t A176261 A006130[n_]:= Sum[Binomial[n-j,j]*3^j, {j,0,n}]; T[n_,k_]:= A006130[k] - A006130[n] + A006130[n-k]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Nov 24 2019 *) %o A176261 (PARI) A006130(n) = sum(j=0,n,binomial(n-j,j)*3^j); %o A176261 T(n,k) = A006130(k) -A006130(n) +A006130(n-k); \\ _G. C. Greubel_, Nov 24 2019 %o A176261 (Magma) A006130:= func< n | &+[Binomial(n-j,j)*3^j: j in [0..n]] >; %o A176261 [A006130(k) -A006130(n) +A006130(n-k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 24 2019 %o A176261 (Sage) %o A176261 def A006130(n): return sum(binomial(n-j,j)*3^j for j in (0..n)) %o A176261 [[A006130(k) -A006130(n) +A006130(n-k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 24 2019 %Y A176261 Cf. A006130. %K A176261 sign,tabl,easy %O A176261 0,5 %A A176261 _Roger L. Bagula_, Apr 13 2010