This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176264 #12 Jun 29 2025 18:28:31 %S A176264 1,1,1,1,-6,1,1,-6,-6,1,1,-55,-55,-55,1,1,-104,-153,-153,-104,1,1, %T A176264 -496,-594,-643,-594,-496,1,1,-1231,-1721,-1819,-1819,-1721,-1231,1,1, %U A176264 -4710,-5935,-6425,-6474,-6425,-5935,-4710,1,1,-13334,-18038,-19263,-19704,-19704,-19263,-18038,-13334,1 %N A176264 Triangle T(n,k) = A015442(k) - A015442(n) + A015442(n-k) read by rows. %C A176264 Row sums are s(n) = {1, 2, -4, -10, -163, -512, -2821, -9540, -40612, -140676, -537533, ...} where s(n) = 3*s(n-1) +11*s(n-2) -27*s(n-3) -35*s(n-4) +49*s(n-5) with g.f. (1-x-21*x^2+7*x^3)/((1-x)*(1-x-7*x^2)^2). %H A176264 G. C. Greubel, <a href="/A176264/b176264.txt">Rows n = 0..100 of triangle, flattened</a> %F A176264 T(n,k) = T(n,n-k). %e A176264 Triangle begins as: %e A176264 1; %e A176264 1, 1; %e A176264 1, -6, 1; %e A176264 1, -6, -6, 1; %e A176264 1, -55, -55, -55, 1; %e A176264 1, -104, -153, -153, -104, 1; %e A176264 1, -496, -594, -643, -594, -496, 1; %e A176264 1, -1231, -1721, -1819, -1819, -1721, -1231, 1; %e A176264 1, -4710, -5935, -6425, -6474, -6425, -5935, -4710, 1; %e A176264 1, -13334, -18038, -19263, -19704, -19704, -19263, -18038, -13334, 1; %e A176264 1, -46311, -59639, -64343, -65519, -65911, -65519, -64343, -59639, -46311, 1; %t A176264 (* Set of sequences q=0..10. This sequence is q=7. *) %t A176264 f[n_, q_]:= f[n, q] = If[n<2, n, f[n-1, q] + q*f[n-2, q]]; %t A176264 T[n_, k_, q_]:= f[k+1, q] + f[n-k+1, q] - f[n+1, q]; %t A176264 Table[Flatten[Table[T[n, k, q], {n,0,10}, {k,0,n}]], {q,0,10}] %t A176264 (* Second program *) %t A176264 A015442[n_]:= Sum[7^j*Binomial[n-j, j], {j,0,(n+1)/2}]; T[n_, k_]:= T[n, k]= A015442[k] +A015442[n-k] -A015442[n]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Nov 24 2019 *) %o A176264 (PARI) A015442(n) = sum(j=0,(n+1)\2, 7^j*binomial(n-j,j)); %o A176264 T(n,k) = A015442(k) - A015442(n) + A015442(n-k); \\ _G. C. Greubel_, Nov 24 2019 %o A176264 (Magma) A015442:= func< n | &+[7^j*Binomial(n-j,j): j in [0..Floor(n/2)]] >; %o A176264 [A015442(k) - A015442(n) + A015442(n-k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 24 2019 %o A176264 (Sage) %o A176264 def A015442(n): return sum(7^j*binomial(n-j,j) for j in (0..floor(n/2))) %o A176264 [[A015442(k) - A015442(n) + A015442(n-k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 24 2019 %K A176264 sign,tabl,easy %O A176264 0,5 %A A176264 _Roger L. Bagula_, Apr 13 2010