This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176266 #13 Oct 25 2020 11:37:11 %S A176266 1,1,2,5,42,132,1144,3978,35530,1,15,210,2470,22386,228459,2908360, %T A176266 37584261,284291205,3701413144,35,852,19019,349812,6529292,132435472, %U A176266 2000945100,24366118700,328386663605,3520256293710,2072,81375,2271776,59988852,1227434238,33401522154,584134601050,11919696387170,234924043375476,3924875235562164,208335 %N A176266 Binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of n. %C A176266 For n = 10^p, a(n) = 1. %F A176266 a(n) = A007318( A000040(n), A007953(n))/A000040(n). %F A176266 a(n) = A060604(n)/A000040(n), n<10. %e A176266 a(5) = 42 because prime(5) = 11, s = 5, binomial(11,5)/11 = 462/11=42. %e A176266 a(16)=2908360 because prime(16)=53, s=7, binomial(53,7)/53 =154143080/53 = 2908360. %p A176266 A176266 := proc(n) binomial(ithprime(n),A007953(n))/ithprime(n) ; end proc: %p A176266 seq(A176266(n),n=1..20) ; %t A176266 Table[Binomial[Prime[n],Total[IntegerDigits[n]]]/Prime[n],{n,40}] (* _Harvey P. Dale_, Oct 25 2020 *) %o A176266 (Sage) A176266 = lambda n: binomial(nth_prime(n), sum(n.digits()))/nth_prime(n) # _D. S. McNeil_, Dec 08 2010 %Y A176266 Cf. A075872. %K A176266 nonn,base %O A176266 1,3 %A A176266 _Michel Lagneau_, Dec 07 2010