This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176267 #21 Mar 13 2014 00:57:43 %S A176267 5,55,1430,4862,1463,1193010,1015,9414328,18278,749398,370577311, %T A176267 16723070,225398683020,7151980,378683037040,149846840,8511300512, %U A176267 272994644359580,194480021970,8516063242041795,8175951659117794,50,42925,3046258475,391139588190,1242164,1646644081775,2271776,38642514470976,4683175503770976 %N A176267 a(n) = binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of prime(n). %C A176267 Note that a(n) is always an integer, as binomial(p,s) = p! / ((p-s)!/s!) is always divisible by p for prime p because neither (p-s)! nor s! can contain a factor of p when 0 < s < p, which occurs when n >= 5. By contrast, for n < 5, p(n) < 10, the sum of digits is p(n) itself, and the result is 1/p(n). %e A176267 For n = 6, prime(6) = 13, s = 1+3 = 4 and binomial(13, 4)/13 = 715/13 = 55. %p A176267 A007605 := proc(n) A007953(ithprime(n)) ; end proc: %p A176267 A176267 := proc(n) local p; p := ithprime(n) ; binomial(p,A007605(n))/p ; end proc: %p A176267 seq(A176267(n),n=5..20) ; %t A176267 pn[n_]:=Module[{pr=Prime[n]},Binomial[pr,Total[IntegerDigits[pr]]]/pr]; Array[pn,40,5] (* _Harvey P. Dale_, Mar 29 2012 *) %o A176267 (Sage) A176267 = lambda n: binomial(nth_prime(n), sum(nth_prime(n).digits()))/nth_prime(n) # _D. S. McNeil_, Dec 08 2010 %Y A176267 Cf. A176266, A007605. %K A176267 nonn,base %O A176267 5,1 %A A176267 _Michel Lagneau_, Dec 07 2010