This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176268 #4 Jun 28 2013 01:11:44 %S A176268 3467,6947,13907,27827,55667,111347,222707,445427,890867 %N A176268 Primes of a Generalized Cunningham chain of length 9 by the function f(p) = 2 * p + 13. %C A176268 See comments and references of A176223 and A176247 %C A176268 Chain of 8 primes: 2, 17, 47, 107, 227, 467, 947, 1907 %C A176268 It is conjectured that arbitrarily long such chains exist %D A176268 Joe Buhler: Algorithmic Number Theory: Third International Symposium, ANTS-III, New York: Springer, 1998 %D A176268 David J. Darling: The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, Hoboken: John Wiley & Sons, 2004 %D A176268 Paulo Ribenboim: Die Welt der Primzahlen. Geheimnisse und Rekorde, Springer-Verlag GmbH & Co. KG, 2006 %e A176268 3467 = prime(486), (3467 - 13)/ 2 = 1727 = 11 * 157 is composite %e A176268 f(3467) = 6947 = prime(891), f(6947) = 13907 = prime(1644) %e A176268 f(13907) = 27827 = prime(3040), f( 27827) = 55667 = prime(5649) %e A176268 f(55667) = 111347 = prime(10565), f(111347) = 222707 = prime(19832) %e A176268 f(222707) = 445427 = prime(37374), f(445427) = 890867 = prime(70612) %e A176268 f(890867) = 1781747 = 11 * 161977 %e A176268 3467 is smallest prime for such a chain of 9 primes %Y A176268 A000040, A005602, A005603, A176247 %K A176268 fini,nonn %O A176268 1,1 %A A176268 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 13 2010