This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176271 #29 Feb 16 2025 08:33:12 %S A176271 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47, %T A176271 49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93, %U A176271 95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131 %N A176271 The odd numbers as a triangle read by rows. %C A176271 A108309(n) = number of primes in n-th row. %H A176271 G. C. Greubel, <a href="/A176271/b176271.txt">Rows n = 1..100 of the triangle, flattened</a> %H A176271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NicomachussTheorem.html">Nicomachus's Theorem</a> %H A176271 Wikipedia, <a href="http://de.wikipedia.org/wiki/Nikomachos_von_Gerasa">Nikomachos von Gerasa</a> %F A176271 T(n, k) = n^2 - n + 2*k - 1 for 1 <= k <= n. %F A176271 T(n, k) = A005408(n*(n-1)/2 + k - 1). %F A176271 T(2*n-1, n) = A016754(n-1) (main diagonal). %F A176271 T(2*n, n) = A000466(n). %F A176271 T(2*n, n+1) = A053755(n). %F A176271 T(n, k) + T(n, n-k+1) = A001105(n), 1 <= k <= n. %F A176271 T(n, 1) = A002061(n), central polygonal numbers. %F A176271 T(n, 2) = A027688(n-1) for n > 1. %F A176271 T(n, 3) = A027690(n-1) for n > 2. %F A176271 T(n, 4) = A027692(n-1) for n > 3. %F A176271 T(n, 5) = A027694(n-1) for n > 4. %F A176271 T(n, 6) = A048058(n-1) for n > 5. %F A176271 T(n, n-3) = A108195(n-2) for n > 3. %F A176271 T(n, n-2) = A082111(n-2) for n > 2. %F A176271 T(n, n-1) = A014209(n-1) for n > 1. %F A176271 T(n, n) = A028387(n-1). %F A176271 Sum_{k=1..n} T(n, k) = A000578(n) (Nicomachus's theorem). %F A176271 Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A065599(n) (alternating sign row sums). %F A176271 Sum_{j=1..n} (Sum_{k=1..n} T(j, k)) = A000537(n) (sum of first n rows). %e A176271 From _Philippe Deléham_, Oct 03 2011: (Start) %e A176271 Triangle begins: %e A176271 1; %e A176271 3, 5; %e A176271 7, 9, 11; %e A176271 13, 15, 17, 19; %e A176271 21, 23, 25, 27, 29; %e A176271 31, 33, 35, 37, 39, 41; %e A176271 43, 45, 47, 49, 51, 53, 55; %e A176271 57, 59, 61, 63, 65, 67, 69, 71; %e A176271 73, 75, 77, 79, 81, 83, 85, 87, 89; (End) %p A176271 A176271 := proc(n,k) %p A176271 n^2-n+2*k-1 ; %p A176271 end proc: # _R. J. Mathar_, Jun 28 2013 %t A176271 Table[n^2-n+2*k-1, {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 10 2024 *) %o A176271 (Haskell) %o A176271 a176271 n k = a176271_tabl !! (n-1) !! (k-1) %o A176271 a176271_row n = a176271_tabl !! (n-1) %o A176271 a176271_tabl = f 1 a005408_list where %o A176271 f x ws = us : f (x + 1) vs where (us, vs) = splitAt x ws %o A176271 -- _Reinhard Zumkeller_, May 24 2012 %o A176271 (Magma) [n^2-n+2*k-1: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Mar 10 2024 %o A176271 (SageMath) flatten([[n^2-n+2*k-1 for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Mar 10 2024 %Y A176271 Cf. A000466, A000537, A000578, A001105, A002061, A005408, A014209. %Y A176271 Cf. A016754, A027688, A027690, A027692, A027694, A028387, A048058. %Y A176271 Cf. A053755, A065599, A082111, A108195, A108309, A214604, A214661. %K A176271 nonn,tabl %O A176271 1,2 %A A176271 _Reinhard Zumkeller_, Apr 13 2010