This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176283 #15 Jun 29 2025 18:28:27 %S A176283 1,1,1,1,8,1,1,27,27,1,1,64,83,64,1,1,125,181,181,125,1,1,216,333,370, %T A176283 333,216,1,1,343,551,649,649,551,343,1,1,512,847,1036,1097,1036,847, %U A176283 512,1,1,729,1233,1549,1701,1701,1549,1233,729,1,1,1000,1721,2206,2485,2576,2485,2206,1721,1000,1 %N A176283 Triangle T(n,k) = 1 + A000537(n) - A000537(k) - A000537(n-k), read by rows. %C A176283 Like A176282 but build on sums of cubes (A000537) instead of sums of squares. %C A176283 Row sums are {1, 2, 10, 56, 213, 614, 1470, 3088, 5889, 10426, 17402, ...} = (n+1)*(9*n^4 + 6*n^3 - 11*n^2 - 4*n + 60)/60. %H A176283 G. C. Greubel, <a href="/A176283/b176283.txt">Rows n = 0..100 of triangle, flattened</a> %F A176283 T(n,k) = T(n,n-k). %F A176283 T(n, k) = (4 + n^2*(n+1)^2 - k^2*(k+1)^2 - (n-k)^2*(n-k+1)^2)/4. - _G. C. Greubel_, Nov 25 2019 %e A176283 Triangle begins as: %e A176283 1; %e A176283 1, 1; %e A176283 1, 8, 1; %e A176283 1, 27, 27, 1; %e A176283 1, 64, 83, 64, 1; %e A176283 1, 125, 181, 181, 125, 1; %e A176283 1, 216, 333, 370, 333, 216, 1; %e A176283 1, 343, 551, 649, 649, 551, 343, 1; %e A176283 1, 512, 847, 1036, 1097, 1036, 847, 512, 1; %e A176283 1, 729, 1233, 1549, 1701, 1701, 1549, 1233, 729, 1; %e A176283 1, 1000, 1721, 2206, 2485, 2576, 2485, 2206, 1721, 1000, 1; %p A176283 seq(seq(, k=0..n), n=0..12); # _G. C. Greubel_, Nov 25 2019 %t A176283 (* Set of sequences q=1..10. This sequence is q=3. *) %t A176283 f[n_, k_, q_]:= f[n, k, q] = 1 + Sum[i^q, {i,0,n}] - Sum[i^q, {i,0,k}] - Sum[i^q, {i,0,n-k}]; Table[Flatten[Table[f[n, k, q], {n,0,10}, {k,0,n}]], {q,1,10}] %t A176283 (* Second program *) %t A176283 Table[(4 +n^2*(n+1)^2 -k^2*(k+1)^2 -(n-k)^2*(n-k+1)^2)/4, {n,0,12}, {k,0, n} ]//Flatten (* _G. C. Greubel_, Nov 25 2019 *) %o A176283 (PARI) T(n,k) = 1 + (n^2*(n+1)^2 - k^2*(k+1)^2 - (n-k)^2*(n-k+1)^2)/4; \\ _G. C. Greubel_, Nov 25 2019 %o A176283 (Magma) [(4 +n^2*(n+1)^2 -k^2*(k+1)^2 -(n-k)^2*(n-k+1)^2)/4: k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 25 2019 %o A176283 (Sage) [[(4 +n^2*(n+1)^2 -k^2*(k+1)^2 -(n-k)^2*(n-k+1)^2)/4 for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 25 2019 %o A176283 (GAP) Flat(List([0..12], n-> List([0..n], k-> (4 +n^2*(n+1)^2 -k^2*(k+1)^2 - (n-k)^2*(n-k+1)^2)/4 ))); # _G. C. Greubel_, Nov 25 2019 %K A176283 nonn,tabl,easy %O A176283 0,5 %A A176283 _Roger L. Bagula_, Apr 14 2010 %E A176283 Edited by _R. J. Mathar_, May 03 2013