This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176290 #15 Sep 08 2022 08:45:52 %S A176290 1,2,-3,-75,-650,-4507,-28267,-167406,-955271,-5310911,-28962586, %T A176290 -155616567,-826329687,-4345964510,-22675946635,-117526104883, %U A176290 -605643805098,-3105646720979,-15856669574339,-80653146223054 %N A176290 Hankel transform of A105872. %H A176290 G. C. Greubel, <a href="/A176290/b176290.txt">Table of n, a(n) for n = 0..1000</a> %H A176290 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (10,-27,10,-1). %F A176290 G.f.: (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2. %p A176290 seq(coeff(series((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2, x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Nov 25 2019 %t A176290 LinearRecurrence[{10,-27,10,-1},{1,2,-3,-75},30] (* _Harvey P. Dale_, Oct 29 2017 *) %o A176290 (PARI) my(x='x+O('x^30)); Vec((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2) \\ _G. C. Greubel_, Nov 25 2019 %o A176290 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2 )); // _G. C. Greubel_, Nov 25 2019 %o A176290 (Sage) %o A176290 def A176290_list(prec): %o A176290 P.<x> = PowerSeriesRing(ZZ, prec) %o A176290 return P((1-8*x+4*x^2-x^3)/(1-5*x+x^2)^2).list() %o A176290 A176290_list(30) # _G. C. Greubel_, Nov 25 2019 %o A176290 (GAP) a:=[1,2,-3,-75];; for n in [5..30] do a[n]:=10*a[n-1]-27*a[n-2]+10*a[n-3] -a[n-4]; od; a; # _G. C. Greubel_, Nov 25 2019 %Y A176290 Cf. A105872. %K A176290 easy,sign %O A176290 0,2 %A A176290 _Paul Barry_, Apr 14 2010