This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176295 #16 Nov 26 2019 04:24:44 %S A176295 -4,4,8,2,-10,0,12,0,16,-32,-16,32,-4,-4,120,-120,-120,120,0,-96,-96, %T A176295 960,-480,-864,576,80,80,-1680,-1680,8400,-1680,-6720,3360,0,3840, %U A176295 3840,-26880,-26880,80640,0,-57600,23040,-6048,-6048,120960,120960,-423360,-423360,846720,120960,-544320,181440 %N A176295 Triangle read by rows, based on the two-variable g.f. exp(x*t)*(x*(1 - 2*exp(x)) - 2*exp(x))/(1 - exp(t)) (the second of two parts). %C A176295 A factor of 2*n!*(n+2)! was used to make the expansion coefficients all integers. This part is the b(i) part of the Sum_{j=0..n} (a(i) + b(i)*Exp(x) )*x^i, expansion. %C A176295 Row sums are {8, 4, 0, -8, 0, 160, 0, -12096, 0, 2419200, 0,....}. %D A176295 Frederick T. Wall, Chemical Thermodynamics, W. H. Freeman, San Francisco, 1965, pp 296-298 %H A176295 G. C. Greubel, <a href="/A176295/b176295.txt">Rows n = 0..100 of triangle, flattened</a> %e A176295 Triangle begins as: %e A176295 -4, 4, 8; %e A176295 2, -10, 0, 12; %e A176295 0, 16, -32, -16, 32; %e A176295 -4, -4, 120, -120, -120, 120; %e A176295 0, -96, -96, 960, -480, -864, 576; %e A176295 80, 80, -1680, -1680, 8400, -1680, -6720, 3360; %e A176295 0, 3840, 3840, -26880, -26880, 80640, 0, -57600, 23040; %t A176295 p[t_]:= Exp[x*t]*(x*(1 -2*Exp[x]) -2*Exp[x])/(1-Exp[t]); Table[Im[ CoefficientList[2*n!*(n+2)!*SeriesCoefficient[Series[p[t], {t,0,30}]/.Exp[x] -> I, n], x]], {n,0,12}]//Flatten %Y A176295 Cf. A048998, A138133 (the first part of the expansion). %K A176295 sign,tabf %O A176295 0,1 %A A176295 _Roger L. Bagula_, Dec 07 2010 %E A176295 Edited by _N. J. A. Sloane_, Jan 01 2011