This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176303 #21 Feb 11 2024 12:01:10 %S A176303 126,125,123,119,111,95,63,1,129,385,897,1921,3969,8065,16257,32641, %T A176303 65409,130945,262017,524161,1048449,2097025,4194177,8388481,16777089, %U A176303 33554305,67108737,134217601,268435329,536870785,1073741697,2147483521,4294967169 %N A176303 a(n) = abs(2^n-127). %D A176303 R. K. Guy, Unsolved problems in number theory, Vol.1, 1994, Springer-Verlag,pages 42-43. %H A176303 Indranil Ghosh, <a href="/A176303/b176303.txt">Table of n, a(n) for n = 0..1000</a> %H A176303 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2). %F A176303 From _Colin Barker_, Feb 20 2017: (Start) %F A176303 a(n) = 2^n - 127 for n>6. %F A176303 a(n) = 3*a(n-1) - 2*a(n-2) for n>8. %F A176303 G.f.: (126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)). %F A176303 (End) %e A176303 a(2) = abs(2^2-127) = abs(4-127) = abs(-123) = 123. - _Indranil Ghosh_, Feb 20 2017 %t A176303 Table[Abs[2^n-127],{n,0,32}] (* or *) CoefficientList[Series[(126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)) ,{x,0,30}],x] (* _Indranil Ghosh_, Feb 20 2017 *) %t A176303 LinearRecurrence[{3,-2},{126,125,123,119,111,95,63,1,129},40] (* _Harvey P. Dale_, Feb 11 2024 *) %o A176303 (Python) def A176303(n): return abs(2**n-127) # _Indranil Ghosh_, Feb 20 2017 %o A176303 (PARI) Vec((126 - 253*x + 2*x^7 + 252*x^8) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ _Colin Barker_, Feb 20 2017 %o A176303 (PARI) a(n)=abs(2^n-127) \\ _Charles R Greathouse IV_, Feb 20 2017 %Y A176303 See A175347, A169716 for primes. %K A176303 nonn,easy %O A176303 0,1 %A A176303 _Vladimir Shevelev_, Apr 14 2010