This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176305 #11 Sep 08 2022 08:45:52 %S A176305 1,1,1,1,2,1,1,7,7,1,1,31,36,31,1,1,165,194,194,165,1,1,1031,1194, %T A176305 1218,1194,1031,1,1,7423,8452,8610,8610,8452,7423,1,1,60621,68042, %U A176305 69066,69200,69066,68042,60621,1,1,554249,614868,622284,623284,623284,622284,614868,554249,1 %N A176305 Triangle T(n,k) = 1 -A002627(k) -A002627(n-k) +A002627(n), read by rows. %C A176305 Row sums are {1, 2, 4, 16, 100, 720, 5670, 48972, 464660, 4829372, 54711782, ...}. %C A176305 Row sums s(n) appear to obey (2-n)*s(n) +(n+2)*(n-1)*s(n-2) -n*(2*n-1)*s(n-2) +n*(n-2)*s(n-3)=0. - _R. J. Mathar_, May 04 2013 %H A176305 G. C. Greubel, <a href="/A176305/b176305.txt">Rows n = 0..100 of triangle, flattened</a> %F A176305 T(n,k) = T(n,n-k). %e A176305 Triangle begins as: %e A176305 1; %e A176305 1, 1; %e A176305 1, 2, 1; %e A176305 1, 7, 7, 1; %e A176305 1, 31, 36, 31, 1; %e A176305 1, 165, 194, 194, 165, 1; %e A176305 1, 1031, 1194, 1218, 1194, 1031, 1; %e A176305 1, 7423, 8452, 8610, 8610, 8452, 7423, 1; %e A176305 1, 60621, 68042, 69066, 69200, 69066, 68042, 60621, 1; %e A176305 1, 554249, 614868, 622284, 623284, 623284, 622284, 614868, 554249, 1; %p A176305 T:= proc(n, k) option remember; %p A176305 if k=0 or k=n then 1 %p A176305 else 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1)) %p A176305 fi; end: %p A176305 seq(seq(T(n, k), k=0..n), n=0..10); # _G. C. Greubel_, Nov 26 2019 %t A176305 (* First program *) %t A176305 a[n_]:= a[n] = If[n==0,0,n*a[n-1] +1]; %t A176305 T[n_, k_]:= T[n, k] = 1 -(a[k] +a[n-k] -a[n]); %t A176305 Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten %t A176305 (* Second program *) %t A176305 T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, 1 +Floor[n!*(E-1)] -Floor[k!*(E-1)] - Floor[(n-k)!*(E-1)]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 26 2019 *) %o A176305 (PARI) T(n,k) = if(k==0 || k==n, 1, 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1)) ); \\ _G. C. Greubel_, Nov 26 2019 %o A176305 (Magma)b:= func< n | Factorial(n)*(Exp(1)-1)>; %o A176305 function T(n,k) %o A176305 if k eq 0 or k eq n then return 1; %o A176305 else return 1 +Floor(b(n)) -Floor(b(k)) -Floor(b(n-k)); %o A176305 end if; return T; end function; %o A176305 [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Nov 26 2019 %o A176305 (Sage) %o A176305 @CachedFunction %o A176305 def b(n): return factorial(n)*(exp(1)-1); %o A176305 def T(n, k): %o A176305 if (k==0 or k==n): return 1 %o A176305 else: return 1 +floor(b(n)) -floor(b(k)) -floor(b(n-k)) %o A176305 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 26 2019 %K A176305 nonn,tabl %O A176305 0,5 %A A176305 _Roger L. Bagula_, Apr 14 2010