This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176319 #9 Sep 08 2022 08:45:52 %S A176319 5,2,3,8,6,1,2,7,8,7,5,2,5,8,3,0,5,6,7,2,8,4,8,4,8,9,1,4,0,0,4,0,1,0, %T A176319 6,6,9,7,6,3,7,2,3,4,7,4,9,8,9,9,1,6,2,7,1,1,3,4,4,7,2,2,4,8,6,6,2,4, %U A176319 6,6,3,8,5,6,1,3,6,1,3,6,6,9,0,0,4,2,9,2,1,8,0,8,1,9,3,5,3,1,2,8,8,2,3,6,3 %N A176319 Decimal expansion of (5+sqrt(30))/2. %C A176319 Continued fraction expansion of (5+sqrt(30))/2 is A010710 preceded by 5. %H A176319 G. C. Greubel, <a href="/A176319/b176319.txt">Table of n, a(n) for n = 1..1000</a> %e A176319 (5+sqrt(30))/2 = 5.23861278752583056728... %p A176319 evalf( (5+sqrt(30))/2, 120); # _G. C. Greubel_, Nov 26 2019 %t A176319 RealDigits[(5+Sqrt[30])/2,10,120][[1]] (* _Harvey P. Dale_, Apr 24 2011 *) %o A176319 (PARI) default(realprecision, 120); (5+sqrt(30))/2 \\ _G. C. Greubel_, Nov 26 2019 %o A176319 (Magma) SetDefaultRealField(RealField(120)); (5 + Sqrt(30))/2; // _G. C. Greubel_, Nov 26 2019 %o A176319 (Sage) numerical_approx((5+sqrt(30))/2, digits=120) # _G. C. Greubel_, Nov 26 2019 %Y A176319 Cf. A010485 (decimal expansion of sqrt(30)), A010710 (repeat 4, 5). %K A176319 cons,nonn %O A176319 1,1 %A A176319 _Klaus Brockhaus_, Apr 15 2010