This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176331 #16 May 13 2024 05:12:38 %S A176331 1,1,1,1,3,1,1,7,7,1,1,13,28,13,1,1,21,79,79,21,1,1,31,181,315,181,31, %T A176331 1,1,43,361,971,971,361,43,1,1,57,652,2511,3876,2511,652,57,1,1,73, %U A176331 1093,5713,12606,12606,5713,1093,73,1,1,91,1729,11789,35246,50358,35246,11789,1729,91,1 %N A176331 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, n-k) * C(j, k) * (-1)^(n - j). %H A176331 G. C. Greubel, <a href="/A176331/b176331.txt">Rows n = 0..100 of triangle, flattened</a> %F A176331 T(n, k) = T(n, n-k). %F A176331 T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1). - _Peter Luschny_, May 13 2024 %e A176331 Triangle begins %e A176331 1; %e A176331 1, 1; %e A176331 1, 3, 1; %e A176331 1, 7, 7, 1; %e A176331 1, 13, 28, 13, 1; %e A176331 1, 21, 79, 79, 21, 1; %e A176331 1, 31, 181, 315, 181, 31, 1; %e A176331 1, 43, 361, 971, 971, 361, 43, 1; %e A176331 1, 57, 652, 2511, 3876, 2511, 652, 57, 1; %e A176331 1, 73, 1093, 5713, 12606, 12606, 5713, 1093, 73, 1; %e A176331 1, 91, 1729, 11789, 35246, 50358, 35246, 11789, 1729, 91, 1; %p A176331 T:= proc(n, k) option remember; add( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k), j=0..n); end: seq(seq(T(n, k), k=0..n), n=0..10); # _G. C. Greubel_, Dec 07 2019 %p A176331 T := (n, k) -> binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], -1): %p A176331 seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9); # _Peter Luschny_, May 13 2024 %t A176331 T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[j, k]*Binomial[j, n-k], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 07 2019 *) %o A176331 (PARI) T(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(j, n-k)*binomial(j, k)); \\ _G. C. Greubel_, Dec 07 2019 %o A176331 (Magma) T:= func< n,k | &+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]] >; %o A176331 [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 07 2019 %o A176331 (Sage) %o A176331 @CachedFunction %o A176331 def T(n, k): return sum( (-1)^(n-j)*binomial(j, n-k)*binomial(j, k) for j in (0..n)) %o A176331 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 07 2019 %o A176331 (GAP) %o A176331 T:= function(n,k) %o A176331 return Sum([0..n], j-> (-1)^(n-j)*Binomial(j,k)*Binomial(j,n-k) ); %o A176331 end; %o A176331 Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Dec 07 2019 %Y A176331 Row sums are A176332. %Y A176331 Diagonal sums are A176334. %Y A176331 Central coefficients T(2*n, n) are A176335. %K A176331 easy,nonn,tabl %O A176331 0,5 %A A176331 _Paul Barry_, Apr 15 2010