This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176341 #39 Oct 19 2024 18:32:06 %S A176341 32,1,6,0,2,4,7,13,11,5,49,94,148,110,1,3,40,95,424,37,53,93,135,16, %T A176341 292,89,6,28,33,186,64,0,15,24,86,9,285,46,17,43,70,2,92,23,59,60,19, %U A176341 119,87,57,31,48,172,8,191,130,210,404,10,4,127,219,20,312,22,7,117,98,605,41 %N A176341 a(n) = the location of the first appearance of the decimal expansion of n in the decimal expansion of Pi. %C A176341 It is unknown whether Pi is a normal number. If it is (at least in base 10) then this sequence is well defined. %C A176341 The numbers a(n) refer to the position of the initial digit of n in the decimal expansion of Pi, where "3" is at position a(3)=0, "1" is at position a(1)=1, etc. This is also the numbering scheme used on the "Pi search page" cited among the LINKS. See A232013 for a sequence based on iterations of this one. See A032445 for a variant of the present sequence, where numbering starts at one. - _M. F. Hasler_, Nov 16 2013 %H A176341 Vincenzo Librandi, <a href="/A176341/b176341.txt">Table of n, a(n) for n = 0..1000</a> %H A176341 Dave Andersen, <a href="http://www.angio.net/pi/piquery">Search within first 200,000,000 digits of pi</a> %H A176341 Michael D. Huberty, Ko Hayashi & Chia Vang, <a href="http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html">First 100,000 digits of pi</a> %H A176341 Simon Plouffe, <a href="https://wayback.cecm.sfu.ca/projects/ISC/data/pi.html">First 50,000,000 digits of pi</a> %F A176341 a(n) = A032445(n)-1. - _M. F. Hasler_, Nov 16 2013 %F A176341 a(n) = 0 if n is in A011545, otherwise a(n) = A014777(n). - _Pontus von Brömssen_, Aug 31 2024 %t A176341 p=ToString[FromDigits[RealDigits[N[Pi, 10^4]][[1]]]]; Do[Print[StringPosition[p, ToString[n]][[1]][[1]] - 1], {n, 0, 100}] (* _Vincenzo Librandi_, Apr 17 2017 *) %t A176341 With[{pid=RealDigits[Pi,10,800][[1]]},Flatten[Table[ SequencePosition[ pid,IntegerDigits[n],1],{n,0,70}],1]][[All,1]]-1 (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 27 2019 *) %o A176341 (Python) %o A176341 pi = "314159265358979323846264338327950288419716939937510582097494459230..." %o A176341 [ pi.find(str(i)) for i in range(10000) ] %o A176341 (PARI) A176341(n)=my(L=#Str(n));n=Mod(n,10^L);for(k=L-1,9e9,Pi\.1^k-n||return(k+1-L)) \\ Make sure to use sufficient realprecision, e.g. via \p999. - _M. F. Hasler_, Nov 16 2013 %Y A176341 Cf. A000796, A011545, A014777, A032445, A232013. %K A176341 base,nonn %O A176341 0,1 %A A176341 _Daniel E. Loeb_, Apr 15 2010