This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176343 #26 Sep 08 2022 08:45:52 %S A176343 0,1,2,5,16,81,649,8438,177199,6024767,331362186,29491234555, %T A176343 4246737775921,989489901789594,373037692974676939, %U A176343 227552992714552932791,224594803809263744664718,358677901683394200229554647,926823697949890613393169207849 %N A176343 a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0. %H A176343 Vincenzo Librandi, <a href="/A176343/b176343.txt">Table of n, a(n) for n = 0..100</a> %F A176343 a(n) = Fibonacci(n)*a(n-1) + 1, a(0) = 0. %F A176343 a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * A101689 = 3.317727324507285486862890025085971028467... is product of Fibonacci factorial constant (see A062073) and Sum_{n>=1} 1/(Product_{k=1..n} A000045(k) ). - _Vaclav Kotesovec_, Feb 20 2014 %p A176343 with(combinat); %p A176343 a:= proc(n) option remember; %p A176343 if n=0 then 0 %p A176343 else 1 + fibonacci(n)*a(n-1) %p A176343 fi; end: %p A176343 seq( a(n), n=0..20); # _G. C. Greubel_, Dec 07 2019 %t A176343 a[n_]:= a[n]= If[n==0, 0, Fibonacci[n]*a[n-1] +1]; Table[a[n], {n,0,20}] %o A176343 (PARI) a(n) = if(n==0, 0, 1 + fibonacci(n)*a(n-1) ); \\ _G. C. Greubel_, Dec 07 2019 %o A176343 (Magma) %o A176343 function a(n) %o A176343 if n eq 0 then return 0; %o A176343 else return 1 + Fibonacci(n)*a(n-1); %o A176343 end if; return a; end function; %o A176343 [a(n): n in [0..20]]; // _G. C. Greubel_, Dec 07 2019 %o A176343 (Sage) %o A176343 def a(n): %o A176343 if (n==0): return 0 %o A176343 else: return 1 + fibonacci(n)*a(n-1) %o A176343 [a(n) for n in (0..20)] # _G. C. Greubel_, Dec 07 2019 %o A176343 (GAP) %o A176343 a:= function(n) %o A176343 if n=0 then return 0; %o A176343 else return 1 + Fibonacci(n)*a(n-1); %o A176343 fi; end; %o A176343 List([0..20], n-> a(n) ); # _G. C. Greubel_, Dec 07 2019 %Y A176343 Cf. A000045, A003266, A062073, A101689, A139339, A238243, A238244. %K A176343 nonn,easy %O A176343 0,3 %A A176343 _Roger L. Bagula_, Apr 15 2010