A176356 Numbers which when seen in a mirror are primes (or 1), using calculator-style 7-segment numerals.
1, 2, 5, 10, 11, 20, 50, 100, 101, 110, 115, 118, 121, 125, 152, 158, 181, 185, 188, 200, 500, 1000, 1010, 1012, 1018, 1022, 1028, 1051, 1081, 1082, 1085, 1100, 1102, 1105, 1108, 1115, 1118, 1121, 1150, 1180, 1181, 1201, 1202, 1210, 1211, 1225, 1250, 1255, 1282, 1285, 1501, 1502, 1520, 1522
Offset: 1
Examples
110 is in the sequence because the mirror is 011 = 11 and prime. 152 is in the sequence because the mirror is 521 = A000040(98), a prime. 31 is not in the sequence because the 3 cannot be mirrored. 115 is in the sequence because the mirror is 211 = A000040(47), a prime.
References
- P. Giannopoulos, The Brainteasers, unpublished.
Programs
-
Maple
calcmirr := proc(n) local L,Lm,i ; L := convert(n,base,10) ; Lm := [] ; for i from 1 to nops(L) do if op(i,L) = 2 then Lm := [5,op(Lm)] ; elif op(i,L) = 5 then Lm := [2,op(Lm)] ; elif op(i,L) in {0,1,8} then Lm := [op(i,L),op(Lm)] ; else return 0 ; end if; end do: add(op(i,Lm)*10^(i-1),i=1..nops(Lm)) ; end proc: isA176356 := proc(n) local m; m := calcmirr(n) ; isprime(m) or (m = 1) ; end proc: for n from 1 to 2001 do if isA176356(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Sep 24 2011
-
PARI
isa(n)=local(r,d); while(n>0, d=n%10; if(d==2, d=5, if(d==5,d=2, if(d==3||d==4||d==6||d==7||d==9, return(0)))); r=r*10+d; n\=10); isprime(r) \\ Franklin T. Adams-Watters. Produces sequence except for initial 1
Extensions
Sequence reconstructed with a consistent interpretation of the definition. - R. J. Mathar, Sep 24 2011
Edited by N. J. A. Sloane, Oct 24 2011
Comments