A176466 The smallest prime q which stays prime through at least 3 iterations of q -> 2 * q + prime(n+1).
2, 13, 5, 199, 2, 13, 251, 487, 61, 5, 113, 19, 2, 13, 157, 1621, 269, 23, 139, 557, 5, 37, 241, 5, 19, 587, 823, 41, 97, 5, 109, 13, 1151, 31, 1409, 53, 5, 1543, 67, 421, 5, 1039, 2, 13, 41, 359, 1697, 43, 101, 157, 1531, 179, 79, 193, 37, 181, 149, 113, 4519, 197, 397, 23, 739, 2, 283, 29, 5, 163, 1031, 1987
Offset: 1
Examples
n=1: q=2, iteration 2 * q + prime(2) = 7, iteration 2 * 7 + 3 = 17, 2 * 17 + 3 = 37: q=2 is first term n=2: q=13, iteration 2 * 13 + prime(3) = 31, iteration 2 * 31 + 5 = 67, iteration 2 * 67 + 5 = 139, q=13 is 2nd term
Programs
-
Maple
A176466 := proc(n) pk1 := ithprime(n+1) ; for pidx from 1 do p := ithprime(pidx) ; pitr := 2*p+pk1 ; if not isprime(pitr) then next ; end if; pitr := 2*pitr+pk1 ; if not isprime(pitr) then next ; end if; pitr := 2*pitr+pk1 ; if not isprime(pitr) then next ; else return p ; end if; end do: end proc: seq(A176466(n),n=1..80) ; # R. J. Mathar, May 21 2025
Comments