cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176466 The smallest prime q which stays prime through at least 3 iterations of q -> 2 * q + prime(n+1).

Original entry on oeis.org

2, 13, 5, 199, 2, 13, 251, 487, 61, 5, 113, 19, 2, 13, 157, 1621, 269, 23, 139, 557, 5, 37, 241, 5, 19, 587, 823, 41, 97, 5, 109, 13, 1151, 31, 1409, 53, 5, 1543, 67, 421, 5, 1039, 2, 13, 41, 359, 1697, 43, 101, 157, 1531, 179, 79, 193, 37, 181, 149, 113, 4519, 197, 397, 23, 739, 2, 283, 29, 5, 163, 1031, 1987
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 18 2010

Keywords

Comments

See comments and references of A176379.
q, 2 * q + prime(n+1), 4 * q + 3 * prime(n+1) and 8 * q + 7 * prime(n+1) are required to be prime.
List of (q,first iteration, 2nd iteration, 3rd iteration):
(2,7,17,37) (13,31,67,139) (5,17,41,89) (199,409,829,1669) (2,17,47,107)
(13,43,103,223) (251,521,1061,2141) (487,997,2017,4057) (61,151,331,691) (5,41,113,257)
(113,263,563,1163) (19,79,199,439) (2,47,137,317) (13,73,193,433) (157,367,787,1627)
(1621,3301,6661,13381) (269,599,1259,2579) (23,113,293,653) (139,349,769,1609) (557,1187,2447,4967)
(5,89,257,593) (37,157,397,877) (241,571,1231,2551) (5,107,311,719) (19,139,379,859)
(587,1277,2657,5417) (823,1753,3613,7333) (41,191,491,1091) (97,307,727,1567) (5,137,401,929)
(109,349,829,1789) (13,163,463,1063) (1151,2441,5021,10181) (31,211,571,1291) (1409,2969,6089,12329)
(53,263,683,1523) (5,173,509,1181) (1543,3253,6673,13513) (67,307,787,1747) (421,1021,2221,4621)
(5,191,563,1307) (1039,2269,4729,9649) (2,197,587,1367) (13,223,643,1483) (41,281,761,1721)
(359,929,2069,4349) (1697,3617,7457,15137) (43,313,853,1933) (101,431,1091,2411) (157,547,1327,2887)

Examples

			n=1: q=2, iteration 2 * q + prime(2) = 7, iteration 2 * 7 + 3 = 17, 2 * 17 + 3 = 37: q=2 is first term
n=2: q=13, iteration 2 * 13 + prime(3) = 31, iteration 2 * 31 + 5 = 67, iteration 2 * 67 + 5 = 139, q=13 is 2nd term
		

Crossrefs

Programs

  • Maple
    A176466 := proc(n)
        pk1 := ithprime(n+1) ;
        for pidx from 1 do
            p := ithprime(pidx) ;
            pitr := 2*p+pk1 ;
            if not isprime(pitr) then
                next ;
            end if;
            pitr := 2*pitr+pk1 ;
            if not isprime(pitr) then
                next ;
            end if;
            pitr := 2*pitr+pk1 ;
            if not isprime(pitr) then
                next ;
            else
                return p ;
            end if;
        end do:
    end proc:
    seq(A176466(n),n=1..80) ; # R. J. Mathar, May 21 2025
Showing 1-1 of 1 results.