This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176383 #19 Jan 04 2019 16:25:23 %S A176383 2,2,3,8,3,8,3,5,16,9,5,16,9,5,7,128,9,5,7,128,81,5,7,256,81,25,7,256, %T A176383 81,25,7,11,1024,243,25,7,11,1024,243,25,7,11,13,2048,243,25,49,11,13, %U A176383 2048,729,125,49,11,13,32768,729,125,49,11,13,32768,729,125,49,11,13,17,65536 %N A176383 Triangle of the powers of the prime factorization of n! in row n. %C A176383 Row n contains pi(n) = A000720(n) terms. The exponents are in A115627. %C A176383 The first column contains the maximum power of 2 dividing n!, the second column the maximum power of 3 dividing n! etc. %H A176383 Alois P. Heinz, <a href="/A176383/b176383.txt">Rows n = 2..300, flattened</a> %e A176383 The irregular tables starts with n=2: %e A176383 2; # =2! = 2 %e A176383 2*3; # =3! = 6 %e A176383 8*3; # =4! = 24 %e A176383 8*3*5; # =5! = 120 %e A176383 16*9*5; # =6! %e A176383 16*9*5*7; # =7! %e A176383 128*9*5*7; # =8! %e A176383 128*81*5*7; %e A176383 256*81*25*7; %p A176383 with(numtheory): %p A176383 b:= proc(n) option remember; `if`(n=1, 1, b(n-1)+ %p A176383 add(i[2]*x^pi(i[1]), i=ifactors(n)[2])) %p A176383 end: %p A176383 T:= n->(p->seq(ithprime(i)^coeff(p, x, i), i=1..pi(n)))(b(n)): %p A176383 seq(T(n), n=2..20); # _Alois P. Heinz_, Jun 22 2014 %t A176383 T[n_] := List @@ Power @@@ FactorInteger[n!]; %t A176383 Array[T, 20, 2] // Flatten (* _Jean-François Alcover_, Mar 27 2017 *) %t A176383 Rest[Flatten[Table[#[[1]]^#[[2]]&/@FactorInteger[n!],{n,20}]]] (* _Harvey P. Dale_, Jan 04 2019 *) %o A176383 (PARI) a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);p^sum(j=1,log(i)\log(p),i\=p) \\ _David A. Corneth_, Jun 21 2014 %Y A176383 Cf. A000142, A000720. %K A176383 nonn,tabf %O A176383 2,1 %A A176383 _Vladimir Shevelev_, Apr 16 2010 %E A176383 Arbitrarily defined first 2 terms removed by _R. J. Mathar_, Apr 23 2010