cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176383 Triangle of the powers of the prime factorization of n! in row n.

This page as a plain text file.
%I A176383 #19 Jan 04 2019 16:25:23
%S A176383 2,2,3,8,3,8,3,5,16,9,5,16,9,5,7,128,9,5,7,128,81,5,7,256,81,25,7,256,
%T A176383 81,25,7,11,1024,243,25,7,11,1024,243,25,7,11,13,2048,243,25,49,11,13,
%U A176383 2048,729,125,49,11,13,32768,729,125,49,11,13,32768,729,125,49,11,13,17,65536
%N A176383 Triangle of the powers of the prime factorization of n! in row n.
%C A176383 Row n contains pi(n) = A000720(n) terms. The exponents are in A115627.
%C A176383 The first column contains the maximum power of 2 dividing n!, the second column the maximum power of 3 dividing n! etc.
%H A176383 Alois P. Heinz, <a href="/A176383/b176383.txt">Rows n = 2..300, flattened</a>
%e A176383 The irregular tables starts with n=2:
%e A176383 2; # =2! = 2
%e A176383 2*3; # =3! = 6
%e A176383 8*3; # =4! = 24
%e A176383 8*3*5; # =5! = 120
%e A176383 16*9*5; # =6!
%e A176383 16*9*5*7; # =7!
%e A176383 128*9*5*7; # =8!
%e A176383 128*81*5*7;
%e A176383 256*81*25*7;
%p A176383 with(numtheory):
%p A176383 b:= proc(n) option remember; `if`(n=1, 1, b(n-1)+
%p A176383       add(i[2]*x^pi(i[1]), i=ifactors(n)[2]))
%p A176383     end:
%p A176383 T:= n->(p->seq(ithprime(i)^coeff(p, x, i), i=1..pi(n)))(b(n)):
%p A176383 seq(T(n), n=2..20);  # _Alois P. Heinz_, Jun 22 2014
%t A176383 T[n_] := List @@ Power @@@ FactorInteger[n!];
%t A176383 Array[T, 20, 2] // Flatten (* _Jean-François Alcover_, Mar 27 2017 *)
%t A176383 Rest[Flatten[Table[#[[1]]^#[[2]]&/@FactorInteger[n!],{n,20}]]] (* _Harvey P. Dale_, Jan 04 2019 *)
%o A176383 (PARI) a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);p^sum(j=1,log(i)\log(p),i\=p) \\ _David A. Corneth_, Jun 21 2014
%Y A176383 Cf. A000142, A000720.
%K A176383 nonn,tabf
%O A176383 2,1
%A A176383 _Vladimir Shevelev_, Apr 16 2010
%E A176383 Arbitrarily defined first 2 terms removed by _R. J. Mathar_, Apr 23 2010