cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176385 The smallest number which when multiplied by the n-th repunit gives a Smith number.

Original entry on oeis.org

4, 2, 6, 56, 32, 97, 6, 95, 176, 4, 32, 309, 68, 68, 194, 616, 175, 96, 1540, 4, 816, 14, 1540, 95, 840, 32, 5, 437, 50, 10336, 95, 5, 995, 976, 175, 14, 40, 570, 1976, 995, 1400, 294, 1994, 176, 544, 507, 328, 392, 77, 11020, 18905, 18050, 9995, 779, 4, 805, 669
Offset: 1

Views

Author

Paul Weisenhorn, Apr 16 2010, Apr 23 2010

Keywords

Comments

Smith numbers, A006753: the digits-sum equals the digits-sum of its prime factors.
Repunits: R(n)=(10^n-1)/9 = A002275(n).

Examples

			R(3)=111 multiplied by a(3)=6 yields z=666=2*3*3*37 = A006753(34): 6+6+6 = 2+3+3+3+7 = 18.
		

Programs

  • Maple
    # digits-sum of primfactors of z=dsp(z)
    for n from 2 to 70 do f(n):=1: test:=false:
    while (f(n) < 420000) and (test=false) do
    f(n):=f(n)+1: z:=f(n)*r(n): ds(z):=0:
    dsp(z):=dsp(r(n))+dsp(f(n)):
    while (z>0) do z:=iquo(z,10,'m'): ds(z):=ds(z)+m: end do:
    if(ds(z)=dsp(z)) then test:=true: print(n,f(n)): end if:
    end do: end do:

Extensions

Keyword:base added by R. J. Mathar, Apr 24 2010