A176462 Numbers k such that neither k-1 nor k+1 is prime or semiprime.
0, 17, 19, 29, 31, 41, 43, 49, 51, 53, 55, 65, 67, 69, 71, 77, 79, 89, 91, 97, 99, 101, 103, 109, 111, 113, 115, 125, 127, 129, 131, 137, 139, 149, 151, 153, 155, 161, 163, 169, 171, 173, 175, 181, 183, 185, 187, 189, 191, 197, 199, 209, 211, 221, 223, 229, 231
Offset: 1
Keywords
Examples
0 is a term because neither 0-1=-1 nor 0+1=1 is prime or semiprime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..2000
Crossrefs
Cf. A141468.
Programs
-
Maple
isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc: for n from 0 to 400 do if isA001358(n+1) or isA001358(n-1) or isprime(n+1) or isprime(n-1) then ; else printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 20 2010
-
Mathematica
Join[{0},Flatten[Position[Partition[Table[If[PrimeQ[n]||PrimeOmega[n] == 2,1,0],{n,250}],3,1],?(#[[1]]==#[[3]]==0&),{1},Heads -> False]]+ 1] (* _Harvey P. Dale, Oct 27 2015 *)
Formula
a(n+1) = A166685(n+2).
Extensions
Entries checked by R. J. Mathar, Apr 20 2010
Comments