A176463 Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of ternary trees with 3n+1 leaves and 4k leaves on the bottom level (n>=1, k>=1).
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 15, 8, 4, 2, 29, 15, 8, 4, 1, 57, 29, 15, 8, 2, 1, 112, 57, 29, 15, 4, 2, 1, 220, 112, 57, 29, 7, 4, 2
Offset: 1
Examples
Triangle begins: 1 1 1 1 2 1 1 4 2 1 1 8 4 2 1 15 8 4 2 29 15 8 4 1 57 29 15 8 2 1 112 57 29 15 4 2 1 220 112 57 29 7 4 2
Links
- Christian Elsholtz, Clemens Heuberger and Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075; also arXiv:1108.5964 [math.CO], 2011.
- Jordan Paschke, Jeffrey Burkert and Rebecca Fehribach, Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.