cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176502 a(n) = 2*Farey(m; I) - 1 where m = Fibonacci (n + 1) and I = [1/n, 1].

This page as a plain text file.
%I A176502 #63 Jul 01 2021 12:09:35
%S A176502 1,3,7,17,37,99,243,633,1673,4425,11515,30471,80055,210157,553253,
%T A176502 1454817,3821369,10040187,26360759,69201479,181628861,476576959,
%U A176502 1250223373,3279352967,8600367843,22551873573,59128994931,155014246263,406350098913,1065104999651
%N A176502 a(n) = 2*Farey(m; I) - 1 where m = Fibonacci (n + 1) and I = [1/n, 1].
%C A176502 This sequence provides a strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides an strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. This sequence provides a better strict upper bound than A176500 but is harder to compute. [Corrected by _Antoine Mathys_, May 07 2019]
%C A176502 The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is incorrect for networks with more than 10 resistors, in which non-planar configurations can also occur. Whether the sequence provides at least a valid upper bound for planar networks with generalized bridge circuits (A337516) is difficult to decide on the basis of the insufficient number of terms in A174283 and A337516. See the linked illustrations of the respective quotients. - _Hugo Pfoertner_, Jan 25 2021
%H A176502 Antoine Mathys, <a href="/A176502/b176502.txt">Table of n, a(n) for n = 1..40</a>
%H A176502 Antoni Amengual, <a href="http://dx.doi.org/10.1119/1.19396">The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel</a>, American Journal of Physics, 68(2), 175-179 (February 2000).
%H A176502 Sameen Ahmed Khan, <a href="http://arxiv.org/abs/1004.3346/">The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel</a>, arXiv:1004.3346v1 [physics.gen-ph], (20 April 2010).
%H A176502 Sameen Ahmed Khan, <a href="http://sameenahmedkhan.webs.com/integer-sequences.html">Integer Sequences Authored by Dr. Sameen Ahmed Khan</a>
%H A176502 Sameen Ahmed Khan, <a href="/A176502/a176502.nb">Mathematica notebook</a>
%H A176502 Sameen Ahmed Khan, <a href="http://www.ias.ac.in/resonance/May2012/p468-475.pdf">How Many Equivalent Resistances?</a>, RESONANCE, May 2012. - From _N. J. A. Sloane_, Oct 15 2012
%H A176502 Sameen Ahmed Khan, <a href="http://www.ias.ac.in/mathsci/vol122/may2012/pmsc-d-10-00141.pdf">Farey sequences and resistor networks</a>, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 153-162. - From _N. J. A. Sloane_, Oct 23 2012
%H A176502 Hugo Pfoertner, <a href="/plot2a?name1=A048211&amp;name2=A176502&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=ratio&amp;drawpoints=true&amp;drawlines=true">Ratio for series-parallel networks</a>, Plot2 of A048211(n)/a(n).
%H A176502 Hugo Pfoertner, <a href="/plot2a?name1=A337516&amp;name2=A176502&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=ratio&amp;drawpoints=true&amp;drawlines=true">Ratio for planar networks with generalized bridges</a>, Plot2 of A337516(n)/a(n).
%H A176502 Hugo Pfoertner, <a href="/plot2a?name1=A337517&amp;name2=A176502&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=ratio&amp;drawpoints=true&amp;drawlines=true">Ratio for arbitrary networks</a>, Plot2 of A337517(n)/a(n).
%F A176502 a(n) = 2 * A176501(n) - 1. - _Antoine Mathys_, Aug 07 2018
%e A176502 n = 5, , I = [1/5, 1], m = Fibonacci(6) = 8, Farey(8) = 23, Farey(8; I) = 19, Grand Set(5) = 37.
%t A176502 a1[n_ /; n<4] := 2^(n-1); a1[n_] := Module[{m = Fibonacci[n+1], v}, v = Reap[Do[Sow[j/i], {i, n+1, m}, {j, 1, (i-1)/n}]][[2, 1]]; Total[EulerPhi[ Range[m]]] - Length[v // Union]];
%t A176502 a[n_] := 2 a1[n] - 1;
%t A176502 Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 23}] (* _Jean-François Alcover_, Aug 30 2018, after _Antoine Mathys_ *)
%o A176502 (PARI) farey(n) = sum(i=1, n, eulerphi(i)) + 1;
%o A176502 a176501(n) = my(m=fibonacci(n + 1), count=0); for(b=n+1, m, for(a=1, (b-1)/n, if(gcd(a,b)==1, count++))); farey(m) - 1 - count;
%o A176502 a(n) = 2 * a176501(n) - 1; \\ _Antoine Mathys_, May 07 2019
%Y A176502 Cf. A048211, A153588, A174283, A174284, A174285, A174286, A176499, A176500, A176501, A337516, A337517.
%K A176502 nonn
%O A176502 1,2
%A A176502 _Sameen Ahmed Khan_, Apr 21 2010
%E A176502 a(19)-a(27) from _Antoine Mathys_, Aug 10 2018
%E A176502 a(28)-a(30) from _Antoine Mathys_, May 07 2019