A176504 a(n) = m + k where prime(m)*prime(k) = semiprime(n).
2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 7, 9, 8, 10, 8, 9, 8, 10, 11, 12, 9, 11, 13, 9, 14, 10, 15, 12, 10, 13, 16, 11, 17, 14, 12, 18, 11, 10, 19, 15, 16, 12, 20, 17, 21, 11, 13, 22, 14, 23, 18, 13, 24, 12, 19, 25, 20, 15, 12, 26, 21, 27, 14, 16, 28, 13, 22, 29, 17, 15, 30, 23, 13, 31
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Dec 04 2020: (Start) A semiprime (A001358) is a product of any two prime numbers. The sequence of all semiprimes together with their prime indices and weights begins: 4: 1 + 1 = 2 6: 1 + 2 = 3 9: 2 + 2 = 4 10: 1 + 3 = 4 14: 1 + 4 = 5 15: 2 + 3 = 5 21: 2 + 4 = 6 22: 1 + 5 = 6 25: 3 + 3 = 6 26: 1 + 6 = 7 (End)
Crossrefs
A056239 is the version for not just semiprimes.
A087794 gives the product of the same two indices.
A176506 gives the difference of the same two indices.
A338904 puts the n-th semiprime in row a(n).
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
Programs
-
Maple
From R. J. Mathar, Apr 20 2010: (Start) isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc: A001358 := proc(n) option remember ; if n = 1 then return 4 ; else for a from procname(n-1)+1 do if isA001358(a) then return a; end if; end do; end if; end proc: A084126 := proc(n) min(op(numtheory[factorset](A001358(n)))) ; end proc: A084127 := proc(n) max(op(numtheory[factorset](A001358(n)))) ; end proc: A176504 := proc(n) numtheory[pi](A084126(n)) + numtheory[pi](A084127(n)) ; end proc: seq(A176504(n),n=1..80) ; (End)
-
Mathematica
Table[If[SquareFreeQ[n],Total[PrimePi/@First/@FactorInteger[n]],2*PrimePi[Sqrt[n]]],{n,Select[Range[100],PrimeOmega[#]==2&]}] (* Gus Wiseman, Dec 04 2020 *)
Formula
sqrt(n/(log n log log n)) << a(n) << n/log log n. - Charles R Greathouse IV, Apr 17 2024
Extensions
Entries checked by R. J. Mathar, Apr 20 2010