This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176553 #36 Aug 22 2022 14:25:21 %S A176553 1,3,7,9,13,21,31,37,67,73,79,97,103,109,121,151,163,181,183,193,219, %T A176553 223,229,237,277,283,307,363,367,373,381,409,433,439,471,487,489,499, %U A176553 511,523,571,601,603,607,613,619,657,669,709,733,787,811,817,819,823,841,867 %N A176553 Numbers m such that concatenations of divisors of m are noncomposites. %C A176553 Do all primes p > 5 have a multiple in this sequence? This holds at least for p < 10^4. - _Charles R Greathouse IV_, Sep 23 2016 %C A176553 Conjecture: this sequence is a subsequence of A003136 (Loeschian numbers). - _Davide Rotondo_, Jan 02 2022 %C A176553 If m is not in A003136, there is a prime p == 2 (mod 3) such that the exponent of p in the factorization of m is odd, then we have 3 | 1+p | 1+p+p^2+...+p^(2*r-1) | sigma(m), sigma = A000203 is the sum of divisors, so the concatenation of the divisors of m is also divisible by 3. - _Jianing Song_, Aug 22 2022 %H A176553 Bill McEachen, <a href="/A176553/b176553.txt">Table of n, a(n) for n = 1..10000</a> %e A176553 a(6) = 21: the divisors of 21 are 1,3,7,21, and their concatenation 13721 is noncomposite. %t A176553 Select[Range[10^3], ! CompositeQ@ FromDigits@ Flatten@ IntegerDigits@ Divisors@ # &] (* _Michael De Vlieger_, Sep 23 2016 *) %o A176553 (PARI) is(n)=my(d=divisors(n)); d[1]="1"; isprime(eval(concat(d))) || n==1 \\ _Charles R Greathouse IV_, Sep 23 2016 %o A176553 (Python) %o A176553 from sympy import divisors, isprime %o A176553 def ok(m): return m==1 or isprime(int("".join(str(d) for d in divisors(m)))) %o A176553 print([m for m in range(1, 900) if ok(m)]) # _Michael S. Branicky_, Feb 05 2022 %Y A176553 Cf. A037278, A176554, A176555. %Y A176553 Subsequence of A045572. %K A176553 nonn,base %O A176553 1,2 %A A176553 _Jaroslav Krizek_, Apr 20 2010 %E A176553 Edited and extended by _Charles R Greathouse IV_, Apr 30 2010 %E A176553 Data corrected by _Bill McEachen_, Nov 03 2021