This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176571 #28 Oct 31 2018 09:27:16 %S A176571 313,577,703,785,865,949,1111,1703,2041,2071,2579,2677,2809,3157,3379, %T A176571 3545,4001,4135,4873,5143,5513,5549,5659,5695,5731,5917,6031,6277, %U A176571 6427,6547,7951,8027,8425,8873,9569,9995,10147,10393,10511,10717,11321,11479,12127 %N A176571 Magic constants of 5 X 5 magic squares which consist of consecutive primes. %C A176571 Let Z be the sum of 25 consecutive primes. The necessary condition to get a magic square of these primes is: z = 5(2m + 1), where m is natural number. The magic constant of expected square is S = 2m + 1. %C A176571 The first array of consecutive primes, which satisfies this condition, can be obtained for m = 156. This array gives the smallest magic square with magic constant 313. %C A176571 But not every array of 25 consecutive primes, satisfying the above condition, can be arranged into a magic square. Of the first 50 potential arrays we get 32 magic squares. %C A176571 The suitable and non-suitable arrays are forming a certain pattern. There is an assumption that the sequence can be continued indefinitely. %C A176571 Another problem is to find all the magic squares from the certain array. There is an implemented algorithm to solve it, but it takes quite much time. %C A176571 Let K be the total number of magic squares composed of the numbers of the array for the rotations and reflections. %C A176571 It was possible to obtain: for S = 949 K = 16140, for S = 1703 K = 5608. %C A176571 For a fixed magic constant S, it is easy to obtain the set of n^2 consecutive primes that sum up to n*S, and in particular the smallest one: see the PROGRAM in A272386 which computes the smallest prime for any of the magic sums listed here (for n = 5), and A260673 for the n = 4 analog. - _M. F. Hasler_, Oct 28 2018 %H A176571 Arkadiusz Wesolowski, <a href="/A176571/b176571.txt">Table of n, a(n) for n = 1..66</a> %H A176571 <a href="http://www.natalimak1.narod.ru/mk5pr.htm">Magic squares of order 5 of the consecutive primes</a>, in Russian %e A176571 Three examples of magic squares, which follow the one with the smallest constant. %e A176571 Array: 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 %e A176571 z = 2885, S = 577 %e A176571 59 61 127 179 151 %e A176571 107 131 167 83 89 %e A176571 173 149 67 79 109 %e A176571 101 139 103 163 71 %e A176571 137 97 113 73 157 %e A176571 Array: 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 %e A176571 z = 3515, S = 703 %e A176571 79 83 149 199 193 %e A176571 107 173 179 131 113 %e A176571 181 167 151 101 103 %e A176571 197 89 97 163 157 %e A176571 139 191 127 109 137 %e A176571 Array: 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 %e A176571 z = 3925, S = 785 %e A176571 97 101 149 211 227 %e A176571 199 179 163 107 137 %e A176571 109 197 167 173 139 %e A176571 223 127 113 191 131 %e A176571 157 181 193 103 151 %o A176571 (PARI) A176571(n, p=A272386[n], N=5)=sum(i=2, N^2, p=nextprime(p+1), p)/N \\ Uses pre-computed array A272386, but can also be used to find these values: see there. - _M. F. Hasler_, Oct 30 2018 %Y A176571 Cf. A173981 (analog for 4 X 4 squares), A073520, A272386. %K A176571 nonn %O A176571 1,1 %A A176571 _Natalia Makarova_, Apr 20 2010 %E A176571 a(33)-a(43) from _Arkadiusz Wesolowski_, Apr 28 2016