This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176572 #12 Feb 25 2025 09:00:20 %S A176572 1,2,1,3,1,2,5,1,3,3,7,1,3,4,5,11,1,4,5,7,7,15,1,4,6,8,9,11,22,1,5,7, %T A176572 11,10,15,15,30,1,5,9,12,13,17,19,22,42,1,6,10,16,15,22,21,29,30,56,1, %U A176572 6,12,18,19,25,26,32,38,42,77,1,7,14,23,22,33,29,41,42,54,56,101,1,7,16,26,28,37,37,45,52,59,70,77,135,1,8,18,32,33,47,42,58,57,74,76,98,101 %N A176572 Count the ones in the binary representation of the partitions of n; then add vertically yielding a triangular array T(n,k). %C A176572 Each partition of n is converted into a binary representation with n bits by concatenating binary strings formed from each of the parts p_1(n)+p_2(n)+p_3(n)+..., p_1(n)>=p_2(n)>=p_3(n), larger parts contributing the higher significant bits, the individual part p_i(n) represented by a 1 followed by p_i(n)-1 zeros. %C A176572 These A000041(n) binary representations are stacked, and the total count of 1's in each column is the n-th row of the triangle. %H A176572 John Tyler Rascoe, <a href="/A176572/b176572.txt">Rows n = 1..60, flattened</a> %F A176572 Sum_{k=0..n-1} 2^(n-k)*T(n,k) = A173871(n). %e A176572 Consider the seven partitions of Five, 5=(10000), 41=(1000)(1), 32=(100)(10), 311=(100)(1)(1), 221=(10)(10)(1), 2111=(10)(1)(1)(1) and 11111=(1)(1)(1)(1)(1), %e A176572 the corresponding seven concatenated binary representations are %e A176572 1 0 0 0 0 %e A176572 1 0 0 0 1 %e A176572 1 0 0 1 0 %e A176572 1 0 0 1 1 %e A176572 1 0 1 0 1 %e A176572 1 0 1 1 1 %e A176572 1 1 1 1 1 %e A176572 summing by column yields %e A176572 7 1 3 4 5 the fifth row of the table. %e A176572 Triangle begins: %e A176572 1; %e A176572 2,1; %e A176572 3,1,2; %e A176572 5,1,3,3; %e A176572 7,1,3,4,5; %e A176572 11,1,4,5,7,7; %e A176572 15,1,4,6,8,9,11; %e A176572 ... %p A176572 A176572row := proc(n) L := array(1..n,[seq(0,i=1..n)]) ; for pi in combinat[partition](n) do p := sort(pi) ; p2 := [] ; for i from 1 to nops(p) do p2 := [op(p2),op(convert(2^(op(i,p)-1),base,2))] ; end do: for i from 1 to n do L[i] := L[i]+ op(n-i+1,p2) ; end do: end do: L ; end proc: %p A176572 for n from 1 to 14 do A176572row(n) ; print(%) ; end do: %o A176572 (Python) %o A176572 from sympy .utilities.iterables import ordered_partitions %o A176572 def A176572(row_n): %o A176572 p = [i for i in ordered_partitions(row_n)] %o A176572 A = [[j for k in i[::-1] for j in ([1]+[0]*(k-1))] for i in p] %o A176572 return [sum(A[i][j] for i in range(len(p))) for j in range(row_n)] # _John Tyler Rascoe_, Feb 24 2025 %Y A176572 Cf. A006128 (row sums), A114994, A130321, A173871. %K A176572 easy,nonn,tabl,base %O A176572 1,2 %A A176572 _Alford Arnold_, Apr 22 2010 %E A176572 Edited by _John Tyler Rascoe_, Feb 24 2025