This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176611 #4 Mar 01 2016 16:15:29 %S A176611 1,1,5,15,45,151,549,2083,8133,32487,132141,545299,2277021,9603111, %T A176611 40844629,174997363,754562037,3271847975,14257744125,62407576979, %U A176611 274256671949,1209604653095,5352444701861,23755193862131 %N A176611 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=1 and l=1. %F A176611 G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=1). %F A176611 Conjecture: (n+1)*a(n) +(-7*n+2)*a(n-1) +3*(5*n-7)*a(n-2) +(-25*n+74)*a(n-3) +24*(n-4)*a(n-4) +8*(-n+5)*a(n-5)=0. - _R. J. Mathar_, Mar 01 2016 %e A176611 a(2)=2*1*1+2+1=5. a(3)=2*1*5+2+1^2+1+1=15. a(4)=2*1*15+2+2*1*5+2+1=45. %p A176611 l:=1: : k := 1 : m :=1: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k,p=0..n)+l:od : %p A176611 taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z),z=0,34);seq(d(n),n=0..32); %K A176611 easy,nonn %O A176611 0,3 %A A176611 _Richard Choulet_, Apr 21 2010