This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176619 #15 Dec 15 2024 14:03:22 %S A176619 5,7,97,167,397,607,2617,2707,7687,12097,14407,16787,19577,22307, %T A176619 23827,24967,25717,28547,31687,43037,43517,46817,58967,59617,63607, %U A176619 70237,70957,78517,85027,96797 %N A176619 Primes p such that 2p + 3, 4p + 9, 3p + 2 and 9p + 8 are also primes. %C A176619 These primes stay prime under two iterations of p->2p+3 as well as under two iterations of p->3p+2. %C A176619 For all entries >5 the least significant digit is 7. %D A176619 Joe Buhler: Algorithmic Number Theory: Third International Symposium, ANTS-III, Springer New York, 1998 %D A176619 F. Ischebeck: Einladung zur Zahlentheorie, B. I. Wissenschaftsverlag, Mannheim-Leipzig-Wien-Zuerich, 1992 %H A176619 Harvey P. Dale, <a href="/A176619/b176619.txt">Table of n, a(n) for n = 1..1000</a> %F A176619 A023242 INTERSECT A023246. %e A176619 2*5 + 3 = 13 = prime(6), %e A176619 4*5 + 9 = 29 = prime(10), %e A176619 3*5 + 2 = 17 = prime(7), %e A176619 9*5 + 8 = 53 = prime(16); 5 = prime(3) = a(1). %t A176619 Select[Prime[Range[10000]],AllTrue[{2#+3,4#+9,3#+2,9#+8},PrimeQ]&] (* _Harvey P. Dale_, Dec 15 2024 *) %o A176619 (Magma) [p: p in PrimesUpTo(100000)|IsPrime(2*p+3) and IsPrime(4*p+9) and IsPrime(3*p+2) and IsPrime(9*p+8 )] // _Vincenzo Librandi_, Jan 29 2011 %Y A176619 Cf. A000040, A005602, A023242, A023246, A059762. %K A176619 nonn %O A176619 1,1 %A A176619 Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 22 2010