cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176631 Triangle T(n, k) = 22^(k*(n-k)), read by rows.

This page as a plain text file.
%I A176631 #7 Sep 08 2022 08:45:53
%S A176631 1,1,1,1,22,1,1,484,484,1,1,10648,234256,10648,1,1,234256,113379904,
%T A176631 113379904,234256,1,1,5153632,54875873536,1207269217792,54875873536,
%U A176631 5153632,1,1,113379904,26559922791424,12855002631049216,12855002631049216,26559922791424,113379904,1
%N A176631 Triangle T(n, k) = 22^(k*(n-k)), read by rows.
%H A176631 G. C. Greubel, <a href="/A176631/b176631.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A176631 T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, k) = Product_{j=1..n} (q*(3*q - 1)/2)^j and q = 4.
%F A176631 T(n, k, q) = (binomial(3*q, 2)/3)^(k*(n-k)) with q = 4.
%F A176631 T(n, k, m) = (m+2)^(k*(n-k)) with m = 20. - _G. C. Greubel_, Jul 01 2021
%e A176631 Triangle begins as:
%e A176631   1;
%e A176631   1,       1;
%e A176631   1,      22,           1;
%e A176631   1,     484,         484,             1;
%e A176631   1,   10648,      234256,         10648,           1;
%e A176631   1,  234256,   113379904,     113379904,      234256,       1;
%e A176631   1, 5153632, 54875873536, 1207269217792, 54875873536, 5153632, 1;
%t A176631 T[n_, k_, q_]= (Binomial[3*q,2]/3)^(k*(n-k)); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
%t A176631 Table[22^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 01 2021 *)
%o A176631 (Magma) [22^(k*(n-k)): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 01 2021
%o A176631 (Sage) flatten([[22^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jul 01 2021
%Y A176631 Cf. A000326.
%Y A176631 Cf. A118190 (q=2), A176627 (q=3), this sequence (q=4).
%Y A176631 Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), this sequence (m=20), A176641 (m=26), A176644 (m=38).
%K A176631 nonn,tabl
%O A176631 0,5
%A A176631 _Roger L. Bagula_, Apr 22 2010
%E A176631 Edited by _G. C. Greubel_, Jul 01 2021