This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176639 #12 Sep 08 2022 08:45:53 %S A176639 1,1,1,1,15,1,1,225,225,1,1,3375,50625,3375,1,1,50625,11390625, %T A176639 11390625,50625,1,1,759375,2562890625,38443359375,2562890625,759375,1, %U A176639 1,11390625,576650390625,129746337890625,129746337890625,576650390625,11390625,1 %N A176639 Triangle T(n, k) = 15^(k*(n-k)), read by rows. %H A176639 G. C. Greubel, <a href="/A176639/b176639.txt">Rows n = 0..50 of the triangle, flattened</a> %F A176639 T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 3. %F A176639 T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 3. %F A176639 T(n, k, m) = (m+2)^(k*(n-k)) with m = 13. - _G. C. Greubel_, Jun 30 2021 %e A176639 Triangle begins as: %e A176639 1; %e A176639 1, 1; %e A176639 1, 15, 1; %e A176639 1, 225, 225, 1; %e A176639 1, 3375, 50625, 3375, 1; %e A176639 1, 50625, 11390625, 11390625, 50625, 1; %e A176639 1, 759375, 2562890625, 38443359375, 2562890625, 759375, 1; %t A176639 (* First program *) %t A176639 T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k)); %t A176639 Table[T[n, k, 3], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 30 2021 *) %t A176639 (* Second program *) %t A176639 With[{m=13}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* _G. C. Greubel_, Jun 30 2021 *) %o A176639 (Magma) [(15)^(k*(n-k)): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 30 2021 %o A176639 (Sage) flatten([[(15)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 30 2021 %Y A176639 Cf. A000384. %Y A176639 Cf. A158116 (q=2), this sequence (q=3), A176641 (q=4). %Y A176639 Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), this sequence (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26). %K A176639 nonn,tabl %O A176639 0,5 %A A176639 _Roger L. Bagula_, Apr 22 2010 %E A176639 Edited by _G. C. Greubel_, Jun 30 2021