This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176641 #9 Sep 08 2022 08:45:53 %S A176641 1,1,1,1,28,1,1,784,784,1,1,21952,614656,21952,1,1,614656,481890304, %T A176641 481890304,614656,1,1,17210368,377801998336,10578455953408, %U A176641 377801998336,17210368,1,1,481890304,296196766695424,232218265089212416,232218265089212416,296196766695424,481890304,1 %N A176641 Triangle T(n, k) = 28^(k*(n-k)), read by rows. %H A176641 G. C. Greubel, <a href="/A176641/b176641.txt">Rows n = 0..50 of the triangle, flattened</a> %F A176641 T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, k) = Product_{j=1..n} (q*(2*q - 1))^j and q = 4. %F A176641 From _G. C. Greubel_, Jun 30 2021: (Start) %F A176641 T(n, k, q) = binomial(2*q, 2)^(k*(n-k)) with q = 4. %F A176641 T(n, k, m) = (m+2)^(k*(n-k)) with m = 26. %F A176641 T(n, k, p) = binomial(p+2, 2)^(k*(n-k)) with p = 6. (End) %e A176641 Triangle begins as: %e A176641 1; %e A176641 1, 1; %e A176641 1, 28, 1; %e A176641 1, 784, 784, 1; %e A176641 1, 21952, 614656, 21952, 1; %e A176641 1, 614656, 481890304, 481890304, 614656, 1; %e A176641 1, 17210368, 377801998336, 10578455953408, 377801998336, 17210368, 1; %t A176641 T[n_, k_, q_] = Binomial[2*q, 2]^(k*(n-k)); %t A176641 Table[T[n, k, 4], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 30 2021 *) %t A176641 With[{m=26}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* _G. C. Greubel_, Jun 30 2021 *) %o A176641 (Magma) [(28)^(k*(n-k)): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 30 2021 %o A176641 (Sage) flatten([[(28)^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 30 2021 %Y A176641 Cf. A000384. %Y A176641 Cf. A158116 (q=2), A176639 (q=3), this sequence (q=4). %Y A176641 Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), this sequence (m=26). %Y A176641 Cf. A007318 (p=0), A118180 (p=1), A158116 (p=2), A158117 (p=3), A176639 (p=4), A176643 (p=5), this sequence (p=6). %K A176641 nonn,tabl %O A176641 0,5 %A A176641 _Roger L. Bagula_, Apr 22 2010 %E A176641 Edited by _G. C. Greubel_, Jun 30 2021