This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176642 #15 Sep 08 2022 08:45:53 %S A176642 1,1,1,1,8,1,1,64,64,1,1,512,4096,512,1,1,4096,262144,262144,4096,1,1, %T A176642 32768,16777216,134217728,16777216,32768,1,1,262144,1073741824, %U A176642 68719476736,68719476736,1073741824,262144,1,1,2097152,68719476736,35184372088832,281474976710656,35184372088832,68719476736,2097152,1 %N A176642 Triangle T(n, k) = 8^(k*(n-k)), read by rows. %H A176642 G. C. Greubel, <a href="/A176642/b176642.txt">Rows n = 0..50 of the triangle, flattened</a> %F A176642 T(n, k, q) = c(n,q)/(c(k, q)*c(n-k, q)) where c(n, q) = (q*(3*q - 2))^binomial(n+1,2) and q = 2. %F A176642 T(n, k, q) = (q*(3*q-2))^(k*(n-k)) with q = 2. %F A176642 T(n, k) = 8^A004247(n,k), where A004247 is interpreted as a triangle. [relation detected by sequencedb.net]. - _R. J. Mathar_, Jun 30 2021 %F A176642 T(n, k, m) = (m+2)^(k*(n-k)) with m = 6. - _G. C. Greubel_, Jun 30 2021 %e A176642 Triangle begins as: %e A176642 1; %e A176642 1, 1; %e A176642 1, 8, 1; %e A176642 1, 64, 64, 1; %e A176642 1, 512, 4096, 512, 1; %e A176642 1, 4096, 262144, 262144, 4096, 1; %e A176642 1, 32768, 16777216, 134217728, 16777216, 32768, 1; %e A176642 1, 262144, 1073741824, 68719476736, 68719476736, 1073741824, 262144, 1; %t A176642 T[n_, k_, q_]:= (q*(3*q-2))^(k*(n-k)); Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten %t A176642 With[{m=6}, Table[(m+2)^(k*(n-k)), {n,0,12}, {k,0,n}]//Flatten] (* _G. C. Greubel_, Jun 30 2021 *) %o A176642 (Magma) [8^(k*(n-k)): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 30 2021 %o A176642 (Sage) flatten([[8^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 30 2021 %Y A176642 Cf. this sequence (q=2), A176643 (q=3), A176644 (q=4). %Y A176642 Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), this sequence (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15), A176643 (m=19), A176631 (m=20), A176641 (m=26). %Y A176642 Cf. A000567, A004247. %K A176642 nonn,tabl,less,easy %O A176642 0,5 %A A176642 _Roger L. Bagula_, Apr 22 2010 %E A176642 Edited by _R. J. Mathar_ and _G. C. Greubel_, Jun 30 2021