A176650 Numbers k such that nonnegative non-semiprime(k)+3 = nonnegative non-semiprime(k+3).
1, 11, 12, 18, 19, 20, 26, 27, 28, 47, 53, 63, 64, 65, 66, 67, 68, 69, 73, 83, 84, 91, 92, 93, 98, 99, 100, 101, 102, 109, 115, 116, 117, 118, 122, 128, 129, 130, 134, 135, 136, 148, 152, 153, 154, 155, 156, 161, 162, 163, 164, 165, 166, 174, 183, 184, 185, 192, 193
Offset: 1
Keywords
Examples
1 is a term because nonnegative non-semiprime(1)+3 = 3 = nonnegative non-semiprime(1+3).
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A100959 (non-semiprimes).
Programs
-
Maple
A100959 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[bigomega](a) <> 2 then return a; end if; end do end if; end proc: nnnspr := proc(n) if n = 1 then 0; else A100959(n-1) ; end if; end proc: isA176650 := proc(n) nnnspr(n) + 3 = nnnspr(n+3) ; end proc: for n from 1 to 1200 do if isA176650(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 26 2010
-
Mathematica
Join[{1},Flatten[With[{c=Select[Range[0,300],PrimeOmega[#]!=2&]},Position[ Partition [c,4,1],?(#[[1]]+3==#[[4]]&),1,Heads->False]]]+1] (* _Harvey P. Dale, Oct 15 2022 *)
Extensions
Entries checked by R. J. Mathar, Apr 26 2010
Comments