A176654 Numbers k such that both semiprime(k)/p and semiprime(semiprime(k))/p are prime for some prime p.
1, 2, 4, 5, 6, 8, 14, 20, 21, 22, 24, 27, 28, 42, 43, 47, 52, 58, 62, 64, 65, 66, 70, 73, 75, 82, 87, 92, 97, 105, 109, 111, 116, 129, 130, 133, 135, 147, 149, 150, 161, 170, 171, 172, 189, 191, 195, 208, 220, 222, 224, 227, 241, 246, 267, 274, 276, 277, 281, 287
Offset: 1
Keywords
Examples
1 is a term because both semiprime(1)/2 = 4/2 = 2 and semiprime(semiprime(1))/2 = 10/2 = 5 are prime; 2 is a term because both semiprime(2)/3 = 6/3 = 2 and semiprime(semiprime(2))/3 = 15/3 = 5 are prime; 4 is a term because both semiprime(4)/2 = 10/2 = 5 and semiprime(semiprime(4))/2 = 26/2 = 13 are prime.
Programs
-
Maple
A091022 := proc(n) A001358(A001358(n)) ; end proc: seq(A091022(n),n=1..20) ; isA176654 := proc(n) pfsn := convert(numtheory[factorset]( A001358(n) ),list) ; pfsn1 := convert(numtheory[factorset]( A091022(n) ),list) ; op(1,pfsn) = op(1,pfsn1) or op(1,pfsn) = op(-1,pfsn1) or op(-1,pfsn) = op(1,pfsn1) or op(-1,pfsn) = op(-1,pfsn1) ; end proc: for n from 1 to 1600 do if isA176654(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Apr 26 2010
Extensions
Most values after a(6) replaced by R. J. Mathar, Apr 26 2010
Comments