cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176655 Numbers that are divisible by exactly 7 distinct primes.

This page as a plain text file.
%I A176655 #32 Jul 19 2023 07:45:13
%S A176655 510510,570570,690690,746130,870870,881790,903210,930930,1009470,
%T A176655 1021020,1067430,1111110,1138830,1141140,1193010,1217370,1231230,
%U A176655 1272810,1291290,1345890,1360590,1381380,1385670,1411410,1438710
%N A176655 Numbers that are divisible by exactly 7 distinct primes.
%H A176655 Amiram Eldar, <a href="/A176655/b176655.txt">Table of n, a(n) for n = 1..10000</a>
%e A176655 1711710 = 2 * 3^2 * 5 * 7 * 11 * 13 * 19.
%t A176655 Select[Range[9!,5*9! ],Length[FactorInteger[ # ]]==7&]
%t A176655 Select[Range[144*10^4],PrimeNu[#]==7&] (* _Harvey P. Dale_, Jul 05 2022 *)
%o A176655 (PARI) isA176655(n)=omega(n)==7 \\ _Charles R Greathouse IV_, Mar 11 2011
%o A176655 (PARI) (PARI) A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v)
%o A176655 list(lim,pr=7)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ _Charles R Greathouse IV_, Feb 03 2023
%Y A176655 Row 7 of A125666.
%Y A176655 Cf. A046386, A046387, A067885, A123321.
%K A176655 nonn
%O A176655 1,1
%A A176655 _Vladimir Joseph Stephan Orlovsky_, Apr 22 2010