This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176707 #10 Feb 06 2021 00:05:44 %S A176707 2,5,3,7,9,8,10,4,5,6,5,10,12,12,7,7,7,11,7,13,13,6,9,8,12,9,7,13,9, %T A176707 14,11,7,13,15,10,13,10,16,15,2,9,8,10,17,15,14,10,6,16,12,9,18,11,12, %U A176707 13,4,17,19,10,15,10,18,16,4,18,10,6,12,11,10,12,11,12,13,12,7,16,19,14,14,7 %N A176707 Sum of digits of all distinct prime factors of n-th semiprime. %H A176707 Michael S. Branicky, <a href="/A176707/b176707.txt">Table of n, a(n) for n = 1..10000</a> %e A176707 a(1)=2 because 1st semiprime=2*2 and 2=2; a(2)=5 because 2nd semiprime=2*3 and 2<3. %p A176707 A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: %p A176707 A176707 := proc(n) s := A001358(n) ; add( A007953(p), p = numtheory[factorset](s) ) ; end proc: seq(A176707(n),n=1..120) ; # _R. J. Mathar_, Apr 25 2010 %o A176707 (Python) %o A176707 from sympy import factorint %o A176707 def aupton(terms): %o A176707 alst, m = [], 4 %o A176707 while len(alst) < terms: %o A176707 f = factorint(m) %o A176707 if sum(f.values()) == 2: # semiprime %o A176707 alst.append(sum(sum(map(int, str(p))) for p in f.keys())) %o A176707 m += 1 %o A176707 return alst %o A176707 print(aupton(81)) # _Michael S. Branicky_, Feb 05 2021 %Y A176707 Cf. A095402. %K A176707 nonn,base %O A176707 1,1 %A A176707 _Juri-Stepan Gerasimov_, Apr 24 2010 %E A176707 a(13), a(34) etc. corrected by - _R. J. Mathar_, Apr 25 2010