A176725 Number of ways to choose one element from the multiset corresponding to the k-th multiset repetition class defining partition of n in canonical Abramowitz-Stegun order.
0, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 3, 3, 2, 2, 2, 1, 4, 3, 3, 2, 2, 2, 1, 4, 3, 3, 2, 2, 2, 1, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 4, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 4, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 5, 4, 3, 4, 3, 3, 3, 2, 3, 2, 3, 2, 2, 2, 1, 5, 4, 4, 4, 3, 4, 3, 3, 3, 2, 3, 2, 3, 2, 2, 2, 1
Offset: 0
Examples
[0], [1], [1], [2,1], [2,1], [2,1], [3,2,2,1], [3,2,2,1], [3,2,2,1], [3,3,2,2,2,1], ... a(6,2)=MS(1;6,2)=2 because the second multiset repetition class defining partition of n=6 is [1^2,2^2] (from the characteristic array A176723) encoding the 4-multiset representative {1,1,2,2}, and there are 2 ways to choose 1 element from this set.
Links
- M. Griffiths and I. Mező, A Generalization of Stirling Numbers of the Second Kind via a Special Multiset, Journal of Integer Sequences 13 (2010) 10.2.5.
- W. Lang, First 15 rows and corresponding multisets.
Formula
a(n,k)= largest part in the k-th multiset repetition class defining partition of n>=1. a(0,1):=0. See the characteristic array A176723 in order to find this partition.
a(n,k) = largest element of the k-th multiset repetition class representative in row n>=1, a(0,1):=0.
Extensions
Changed in response to comments by Franklin T. Adams-Watters - Wolfdieter Lang, Apr 02 2011
Comments