This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176758 #13 Sep 08 2022 08:45:53 %S A176758 2,8,28,88,264,768,2192,6176,17248,47872,132288,364416,1001600, %T A176758 2748416,7532800,20627968,56452608,154423296,422276096,1154447360, %U A176758 3155544064,8624177152,23567831040,64400793600,175970803712,480810303488 %N A176758 a(n) = Sum_{k=0..floor((n-1)/2)} (3^k-1)*binomial(n, 2*k+1). %H A176758 G. C. Greubel, <a href="/A176758/b176758.txt">Table of n, a(n) for n = 3..1000</a> %H A176758 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-4). %F A176758 From _R. J. Mathar_, Jan 29 2012: (Start) %F A176758 a(n) = A002605(n) - 2^(n-1) = 2*A094309(n). %F A176758 G.f.: 2*x^3/( (1-2*x)*(1-2*x-2*x^2) ). (End) %t A176758 (* First program *) %t A176758 a[n_, q_]:= Sum[(q^((m-1)/2) - 1)*Binomial[n, m], {m,1,n,2}]; %t A176758 Table[a[n, 3], {n, 3, 30}] %t A176758 (* Second program *) %t A176758 A002605[n_]:= (-I*Sqrt[2])^(n-1)*ChebyshevU[n-1, I/Sqrt[2]]; %t A176758 Table[(Boole[n==0] - 2^n)/2 + A002605[n], {n, 3, 30}] (* _G. C. Greubel_, Sep 17 2021 *) %o A176758 (Magma) I:=[2,8,28]; [n le 3 select I[n] else 4*Self(n-1) - 2*Self(n-2) +4*Self(n-3): n in [1..31]]; // _G. C. Greubel_, Sep 17 2021 %o A176758 (Sage) [(-i*sqrt(2))^(n-1)*chebyshev_U(n-1, i/sqrt(2)) - 2^(n-1) for n in (3..30)] # _G. C. Greubel_, Sep 17 2021 %Y A176758 Cf. A002605, A094706. %K A176758 nonn,easy %O A176758 3,1 %A A176758 _Roger L. Bagula_, Apr 25 2010