cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176781 Smallest prime prime(i) such that concatenation 2//0_(n)//prime(i) is prime.

Original entry on oeis.org

3, 11, 3, 17, 3, 3, 3, 11, 89, 41, 257, 3, 29, 131, 353, 3, 3, 11, 89, 521, 257, 3, 17, 3, 467, 89, 149, 17, 71, 47, 293, 17, 191, 47, 3, 41, 23, 11, 401, 41, 443, 41, 293, 479, 311, 23, 587, 41, 1289, 1013, 29, 41, 59, 293, 1031, 17, 23, 17, 347, 401, 599, 11, 227, 827, 401
Offset: 0

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 26 2010

Keywords

Comments

We search for the prime such that the first prime (=2) concatenated with n zeros and concatenated with that prime is again a prime number.
If p = prime(i) is a d(i)-digit prime: q = 2 * 10^(n+d(i)) + p has to be prime.
Necessarily prime(i) is congruent to 2 (mod 3).
It is conjectured that prime(i) = 3 occurs infinitely often: at n= 0, 2, 4, 5, 6, 11, 15, 16, 21, 23, 34, 114, 119,...

Examples

			n = 0: 2//3 = 23 = prime(9), 3 = prime(2) is first term
n = 1: 2//0//11 = 2011 = prime(305), 11 = prime(5) is 2nd term
n = 2: 2//00//3 = 2003 = prime(304), 3 = prime(2) is 3rd term
		

References

  • E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig/Jena/ Berlin 1982

Crossrefs

Extensions

Offset corrected and sequence extended by R. J. Mathar, Apr 28 2010