This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176793 #10 Oct 03 2024 06:28:16 %S A176793 1,1,1,1,5,1,1,25,25,1,1,113,145,113,1,1,481,673,673,481,1,1,1985, %T A176793 2881,3137,2881,1985,1,1,8065,11905,13441,13441,11905,8065,1,1,32513, %U A176793 48385,55553,57601,55553,48385,32513,1,1,130561,195073,225793,238081,238081,225793,195073,130561,1 %N A176793 A symmetrical triangle read by rows: T(n, k) = 2^n*(q^k - 1)*(q^(n - k) - 1) + 1, where q = 2. %H A176793 G. C. Greubel, <a href="/A176793/b176793.txt">Rows n = 0..50 of the triangle, flattened</a> %F A176793 T(n, k) = 1 - (f(n+1, 2*k+1, q) - f(n+1, 1, q)) - (f(n+1, 2*n-2*k+1, q) - f(n+1, 2*n+1, q)), where f(n, k, q) = 2^(n-1) * q^((k-1)/2), and q = 2. %F A176793 From _G. C. Greubel_, Oct 02 2024: (Start) %F A176793 T(n, k) = 2^n*(2^k - 1)*(2^(n-k) - 1) + 1. %F A176793 T(2*n, n) = 1 + 4^n - 2*8^n + 16^n = 1 + 4*A110206(n). %F A176793 Sum_{k=0..n} T(n, k) = 4^n*(n-3) + 2^n*(n+3) + (n+1). %F A176793 Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1+(-1)^n)*(1 - (2/3)*binomial(2^n, 2)). (End) %e A176793 Triangle begins as: %e A176793 1; %e A176793 1, 1; %e A176793 1, 5, 1; %e A176793 1, 25, 25, 1; %e A176793 1, 113, 145, 113, 1; %e A176793 1, 481, 673, 673, 481, 1; %e A176793 1, 1985, 2881, 3137, 2881, 1985, 1; %e A176793 1, 8065, 11905, 13441, 13441, 11905, 8065, 1; %e A176793 1, 32513, 48385, 55553, 57601, 55553, 48385, 32513, 1; %e A176793 1, 130561, 195073, 225793, 238081, 238081, 225793, 195073, 130561, 1; %t A176793 T[n_, k_, q_] := 2^n*(q^k - 1)*(q^(n - k) - 1) + 1; %t A176793 Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten %o A176793 (Magma) %o A176793 f:= func< n,k,q | 1 + (q^k-1)*(q^(n-k)-1)*2^n >; %o A176793 A176793:= func< n,k | f(n,k,2) >; %o A176793 [A176793(n,k): k in [0..n], n in [0..13]]; // _G. C. Greubel_, Oct 02 2024 %o A176793 (SageMath) %o A176793 def f(n, k, q): return 1 + (q^k -1)*(q^(n-k) -1)*2^n %o A176793 def A176793(n,k): return f(n,k,2) %o A176793 flatten([[A176793(n, k) for k in range(n+1)] for n in range(14)]) # _G. C. Greubel_, Oct 02 2024 %Y A176793 Cf. A000012 (q=1), this sequence (q=2), A176794 (q=3), A176795 (q=4). %Y A176793 Cf. A110206. %K A176793 nonn,tabl %O A176793 0,5 %A A176793 _Roger L. Bagula_, Apr 26 2010 %E A176793 Edited by _G. C. Greubel_, Oct 02 2024