This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176799 #11 Sep 06 2024 20:15:42 %S A176799 1,3,7,11,13,21,35,43,61,63,77,85,91,111,119,129,147,157,171,183,185, %T A176799 231,245,255,273,301,313,333,343,425,441,455,471,473,481,507,521,547, %U A176799 559,629,671,683,741,765,777,793,813,819,833,841,845,903,931,935,1015,1029,1099,1105,1183,1197,1221 %N A176799 a(n) = possible values of A176797(m) in increasing order, where A176797(m) = antiharmonic means of divisors of antiharmonic numbers A020487. %C A176799 From _Robert Israel_, Sep 05 2024: (Start) %C A176799 According to A000203, sigma_1(m) <= (6/Pi^2)*m^(3/2) for m >= 12. Thus since sigma_2(m) > m^2, sigma_2(m)/sigma_1(m) > (Pi^2/6) * m^(1/2). %C A176799 This would suggest that to find all terms <= K of this sequence we should look at sigma_2(m)/sigma_1(m) for m <= 36 * K^2/Pi^4. But using the b-file for A004394 we may get a good upper bound for sigma_1(m)/m for m in this interval, resulting in a much smaller search region. (End) %H A176799 Robert Israel, <a href="/A176799/b176799.txt">Table of n, a(n) for n = 1..1009</a> %p A176799 # This uses the b-file for A004394 %p A176799 K:= 10000: # to get terms <= K %p A176799 M:= 36 * K^2/Pi^4: %p A176799 for i from 1 while A004394[i] < M do od: %p A176799 r:= numtheory:-sigma(A004394[i])/A004394[i]: %p A176799 V:= Vector(K): %p A176799 for m from 1 to r*K do %p A176799 F:= numtheory:-divisors(m); %p A176799 v:= add(d^2, d=F)/add(d,d=F); %p A176799 if v::integer and v <= K and V[v] = 0 then V[v]:= m fi; %p A176799 od: %p A176799 select(v -> V[v] > 0, [$1..K]); # _Robert Israel_, Sep 05 2024 %Y A176799 Cf. A000203, A004394, A020487, A176797, A327054. %K A176799 nonn %O A176799 1,2 %A A176799 _Jaroslav Krizek_, Apr 26 2010 %E A176799 More terms from _Robert Israel_, Sep 05 2024