This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176802 #12 Mar 22 2024 06:48:34 %S A176802 1,3,2,7,28,1,4,420,182,27,270,14,126,4,6,31,1638,91,980,7,32,84, %T A176802 30240,15,248,63,10,1,8190,3,16,21,672,819,4,60515,117800,420,840,84, %U A176802 55860,4,332640,42,182,1638,30240,62,380,744,270,4655,167400,5,54,60,980 %N A176802 a(n) = the smallest natural numbers m such that product of harmonic mean of the divisors of n and harmonic mean of the divisors of m are integers. %C A176802 Harmonic mean of the divisors of number n is rational number b(n) = n*A000005(n) / A000203(n) = A099377(n) / A099378(n). %C A176802 a(n) = 1 for infinitely many n. a(n) = 1 for numbers from A001599: a(A001599(n)) = 1. a(n) = 1 iff A099378(n) = 1. %H A176802 Amiram Eldar, <a href="/A176802/b176802.txt">Table of n, a(n) for n = 1..250</a> %e A176802 For n = 4; b(4) = 12/7, a(4) = 7 because b(7) = 7/4; 12/7 * 7/4 = 3 (integer). %t A176802 h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; a[n_] := Module[{hn = h[n], k = 1}, While[! IntegerQ[hn * h[k]], k++]; k]; Array[a, 35] (* _Amiram Eldar_, Mar 22 2024 *) %o A176802 (PARI) h(n) = {my(f = factor(n)); numdiv(f)/sigma(f, -1);} %o A176802 a(n) = {my(hn = h(n), k = 1); while(denominator(hn * h(k)) > 1, k++); k;} \\ _Amiram Eldar_, Mar 22 2024 %Y A176802 Cf. A000005, A000203, A001599, A099377, A099378. %K A176802 nonn %O A176802 1,2 %A A176802 _Jaroslav Krizek_, Apr 26 2010 %E A176802 Data corrected and extended by _Amiram Eldar_, Mar 22 2024