This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176829 #8 Feb 18 2016 13:12:59 %S A176829 1,3,7,25,95,393,1711,7741,36007,171097,826839,4050957,20074303, %T A176829 100438233,506677279,2574292749,13161031191,67656253081,349499197799, %U A176829 1813347470669,9445448148975,49375113712089,258938850241327 %N A176829 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=1 and l=-1. %F A176829 G.f.: f(z) = (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1). %F A176829 Conjecture: (n+1)*a(n) +(-7*n+2)*a(n-1) +(7*n-5)*a(n-2) +(7*n-26)*a(n-3) +4*(-4*n+17)*a(n-4) +8*(n-5)*a(n-5)=0. - _R. J. Mathar_, Feb 18 2016 %e A176829 a(2)=2*1*3+2-1=7. a(3)=2*1*7+2+3^2+1-1=25. a(4)=2*1*25+2+2*3*7+2-1=95. %p A176829 l:=-1: : k := 1 : m:=3:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od : taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30); %Y A176829 Cf. A176828. %K A176829 easy,nonn %O A176829 0,2 %A A176829 _Richard Choulet_, Apr 27 2010