cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176860 Triangle, read by rows, T(n, k) = (-1)^k * (n-k+1)^(n+2) * binomial(n+1, k).

This page as a plain text file.
%I A176860 #5 Feb 07 2021 21:07:55
%S A176860 1,8,-2,81,-48,3,1024,-972,192,-4,15625,-20480,7290,-640,5,279936,
%T A176860 -468750,245760,-43740,1920,-6,5764801,-11757312,8203125,-2293760,
%U A176860 229635,-5376,7,134217728,-322828856,282175488,-109375000,18350080,-1102248,14336,-8
%N A176860 Triangle, read by rows, T(n, k) = (-1)^k * (n-k+1)^(n+2) * binomial(n+1, k).
%D A176860 F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 267.
%H A176860 G. C. Greubel, <a href="/A176860/b176860.txt">Rows n = 0..100 of the triangle, flattened</a>
%F A176860 T(n, k) = (-1)^k * (n-k+1)^(n+2) * binomial(n+1, k).
%F A176860 Sum_{k=0..n} T(n, k) = (n + 1)*(n + 2)!/2 = A001286(n+2). - _G. C. Greubel_, Feb 07 2021
%e A176860 Triangle begins as:
%e A176860           1;
%e A176860           8,         -2;
%e A176860          81,        -48,         3;
%e A176860        1024,       -972,       192,         -4;
%e A176860       15625,     -20480,      7290,       -640,        5;
%e A176860      279936,    -468750,    245760,     -43740,     1920,       -6;
%e A176860     5764801,  -11757312,   8203125,   -2293760,   229635,    -5376,     7;
%e A176860   134217728, -322828856, 282175488, -109375000, 18350080, -1102248, 14336, -8;
%t A176860 T[n_, k_]:= (-1)^k*(n-k+1)^(n+2)*Binomial[n+1, k];
%t A176860 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
%o A176860 (Sage) flatten([[ (-1)^k*(n-k+1)^(n+2)*binomial(n+1,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 07 2021
%o A176860 (Magma) [(-1)^k*(n-k+1)^(n+2)*Binomial(n+1,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 07 2021
%Y A176860 Cf. A001286.
%K A176860 sign,tabl
%O A176860 0,2
%A A176860 _Roger L. Bagula_, Apr 27 2010
%E A176860 Edited by _G. C. Greubel_, Feb 07 2021