This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176918 #7 Jul 22 2025 07:59:56 %S A176918 1,-1,0,-1,0,0,-1,1,0,0,-1,0,0,0,0,-1,1,1,0,0,0,-1,0,0,0,0,0,0,-1,1,0, %T A176918 0,0,0,0,0,-1,0,1,0,0,0,0,0,0,-1,1,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0, %U A176918 0,0,-1,1,1,0,0,-1,0,0 %N A176918 Triangle read by rows, a signed variant of A077049 * A128407; as infinite lower triangular matrices. %C A176918 Row sums = mu(n), A008683 %F A176918 Given (-1)*triangle A077049, preface this with a "1" as row 1; = M. %F A176918 Perform M * A128407 (the diagonalized variant of A008683); = A176918 as an %F A176918 infinite lower triangular matrix. %e A176918 First few rows of triangle A176918 = %e A176918 1; %e A176918 -1, 0; %e A176918 -1, 0, 0; %e A176918 -1, 1, 0, 0; %e A176918 -1, 0, 0, 0, 0; %e A176918 -1, 1, 1, 0, 0, 0; %e A176918 -1, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 0, 0, 0, 0, 0, 0; %e A176918 -1, 0, 1, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 0, 0, 1, 0, 0, 0, 0, 0; %e A176918 -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0; %e A176918 -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 %e A176918 -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 %e A176918 -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A176918 ... %Y A176918 Cf. A077049, A128407, A008683, A176890 (another version). %K A176918 tabl,sign %O A176918 1,1 %A A176918 _Gary W. Adamson_ and _Mats Granvik_, Apr 29 2010