This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176950 #7 Nov 11 2017 11:07:22 %S A176950 1,1,2,6,19,64,223,799,2927,10922,41382,158800,615939,2410880,9510650, %T A176950 37774357,150929671,606239784,2446566976,9915210221,40336587662, %U A176950 164662328192,674300310836,2769234827610,11402791485018,47067085053193 %N A176950 G.f.: A(x) = 1 + x/Series_Reversion(eta(x) - 1). %C A176950 Here eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815). %H A176950 Vaclav Kotesovec, <a href="/A176950/b176950.txt">Table of n, a(n) for n = 1..500</a> %F A176950 G.f. satisfies: eta(x/(A(x)-1)) = 1 + x. %F A176950 G.f. satisfies: A(eta(x)-1) = 1 + (eta(x)-1)/x. %F A176950 a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.13031461371242728737549949707031... - _Vaclav Kotesovec_, Nov 11 2017 %e A176950 G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 64*x^6 +... %e A176950 eta(x)-1 = -x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 +... %e A176950 x/(A(x)-1) = -x - x^2 - 2*x^3 - 5*x^4 - 15*x^5 - 49*x^6 - 169*x^7 -... (cf. A176025). %t A176950 Rest[CoefficientList[1 + x/InverseSeries[Series[QPochhammer[x] - 1, {x, 0, 30}]], x]] (* _Vaclav Kotesovec_, Nov 11 2017 *) %o A176950 (PARI) {a(n)=polcoeff(1+x/serreverse(eta(x+x^2*O(x^n))-1),n)} %Y A176950 Cf. A176025. %K A176950 nonn %O A176950 1,3 %A A176950 _Paul D. Hanna_, Apr 29 2010