This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176951 #29 Jun 09 2025 18:56:25 %S A176951 1,1,0,3,5,29,152,136,2016,10959,26840,1056437,2495955,16311831, %T A176951 102287808,1627690024,10021808981,25377192720,1085424779823, %U A176951 2681584376185,17876295136009,113220181313816,1933742696582736 %N A176951 Let p = prime(n). Then a(n) = Fibonacci(p+1)/p if this is an integer, otherwise a(n) = Fibonacci(p-1)/p if this is an integer, and fall back to a(n)=0 if both are non-integer. %C A176951 This differs only trivially from the better-defined A092330. - _John Blythe Dobson_, Sep 20 2014 %H A176951 Harvey P. Dale, <a href="/A176951/b176951.txt">Table of n, a(n) for n = 1..647</a> %p A176951 A176951aux := proc(n) %p A176951 if n = 0 then %p A176951 0; %p A176951 elif combinat[fibonacci](n+1) mod n = 0 then %p A176951 combinat[fibonacci](n+1)/n ; %p A176951 elif combinat[fibonacci](n-1) mod n = 0 then %p A176951 combinat[fibonacci](n-1)/n ; %p A176951 else %p A176951 0 ; %p A176951 end if; %p A176951 end proc: %p A176951 A176951 := proc(n) %p A176951 A176951aux(ithprime(n)) ; %p A176951 end proc: %p A176951 seq(A176951(n),n=1..20) ; # _R. J. Mathar_, Oct 29 2011 %t A176951 f[n_] = If[n == 0, 0, If[Mod[Fibonacci[n + 1], n] == 0, Fibonacci[n + 1]/n, If[Mod[Fibonacci[n - 1], n] == 0, Fibonacci[n - 1]/n, 0]]]; %t A176951 Table[f[Prime[n + 1]], {n, 0, 50}] %t A176951 Table[With[{f1=Fibonacci[p+1],f2=Fibonacci[p-1]},Which[IntegerQ[f1/p],f1/p,IntegerQ[f2/p],f2/p,True,0]],{p,Prime[Range[30]]}] (* _Harvey P. Dale_, Jun 09 2025 *) %o A176951 (PARI) a(n)=my(p=prime(n),t);t=fibonacci(p+1);if(t%p==0,t/p,t=fibonacci(p-1);if(t%p==0,t/p,0)) \\ _Charles R Greathouse IV_, Oct 29 2011 %Y A176951 Cf. A092330. %K A176951 nonn %O A176951 1,4 %A A176951 _Roger L. Bagula_, Apr 29 2010