This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176983 #7 Feb 16 2025 08:33:12 %S A176983 2,5,7,13,17,37,47,67,73,97,103,137,163,167,193,233,277,281,293,307, %T A176983 313,317,347,373,389,421,439,461,463,487,499,503,547,571,577,593,607, %U A176983 613,661,677,691,701,739,743,769,787,821,823,827,829,853,883,953,967,983 %N A176983 Primes p such that smallest prime q > p^2 is of form q = p^2 + k^2. %C A176983 By Fermat's 4n+1 theorem, q must be congruent to 1 (mod 4). %C A176983 Corresponding values of k: 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 6, 2, 2, 4, 2. - _Zak Seidov_, Nov 04 2013 %H A176983 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/Fermats4nPlus1Theorem.html">Fermat's 4n+1 Theorem</a> %e A176983 17 is here because 293 is the first prime after 17^2 and 293 = 17^2 + 2^2. %t A176983 Select[Prime[Range[200]], IntegerQ[Sqrt[NextPrime[ #^2] - #^2]] & ] %Y A176983 Cf. A000040, A000290, A002144, A159828. %Y A176983 A062324 is subsequence. - _Zak Seidov_, Nov 04 2013 %K A176983 nonn %O A176983 1,1 %A A176983 Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 30 2010 %E A176983 Edited and extended by _T. D. Noe_, May 12 2010